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This Paper

I Motivation. Increasing body of research recognizes the importance
of health in shaping economic decisions and outcomes.

Evidence suggests that “health” is complex and hard to measure.

Most studies assume that health is perfectly measured.

I We ask:

How important is the imperfect observability of health to evaluate
the costs of bad health?

I Why should you care?

1. Better understanding of how health shapes decisions and outcomes.

2. Gives a sense of how biased previous studies may be.

3. Informative for future research.
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This Paper

What We Do.

I Estimate canonical structural life-cycle model of savings and labor
supply with health risk under two assumptions:

1. Health is perfectly observable. (standard assumption)

2. Health is not observable, but battery of noisy measures is. Health Model

I Counterfactuals in 2 estimated models (w/ and w/o ME in health).

We focus on the costs of bad health, as measured by labor earnings,
hours worked, consumption, and assets.

Costs of bad health in outcome X : change the distribution of health
shocks and look at X (counterfactual)−X (benchmark).

I By finding the difference in counterfactuals between the two models,
we can quantify the bias introduced by ME in health.
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This Paper

I Findings.

1. Ignoring ME in health leads to underestimating the persistence of
health and the time costs of being unhealthy.

2. Lower persistence of health and lower time costs of bad health lead to
underestimating the costs of bad health by 50–300%.

I Contributions.

1. Estimate structural life-cycle model with health risk and ME in health
taking into account ME in each stage of estimation.

2. Speak to structural literature.

Details
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Rest of the Talk

Structural Model

Data and Estimation

Main Results
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Structural Model
I Individuals aged 50+ (ELSA core household members).

I Biannual life-cycle model: t ∈ {50-51,52-53, . . . ,86-87}.

I Individuals decide how much to work, consume and save.

Partial equilibrium.

I Health affects pecuniary resources, available time, health transitions.
Details

I Government:

Taxes income. Tax system

Provides social security. Pension Benefits

Gives mean-tested transfers. Mean-tested programs

I At each t, the household’s state vector is:

Xt =
(

Ht︸︷︷︸
health

, at︸︷︷︸
assets

, aet︸︷︷︸
average
earnings

, ut︸︷︷︸
persistent wage

component

)
.
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Structural Model
Household head’s decision problem:

max E0

T∑
t=0

βt

[
st(Ht)

1−γ

{
ct
ν
[
L−φP1{Nt>0}−Nt −φH1{Ht=Bad}

]1−ν}1−γ

+
[
1− st(Ht)

]
b(at+1)

]
subject to

b(at+1) = θB
(κB +at+1)

(1−γ)ν

1−γ

Budget constraint

Borrowing constraint

Transition functions

Initial conditions

Borrowing and budget constraints Numerical Procedure
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Data

I We use data from ELSA (English Longitudinal Study of Ageing):

− Survey data

− Representative of the old English population.

− Individuals aged +50 (and their partners).

− Study started in 2002; today, 9 waves (bi-annual interviews).

I Why ELSA, why the UK? Avoid unnecessary complications.

− No need to model employer-provided health insurance and medical
expenditures. (Important factors in the environment of the US)

− NHS provides universal health care (to UK ordinarily residents).

− Private health care used by approx. 10%, as a top-up to NHS.
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Estimation

Two-step estimation procedure.

1. Estimate some parameters outside the model and set some others to
values taken from the literature.

Taxes & Other Parameters Wages Pensions Spousal earnings Average earnings Initial distribution

? Health process and ME model. (next slide)

2. Estimate remaining parameters inside model using Indirect Inference.
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Parameters Estimated Outside the Model
Process for health and ME model.

1. Ignoring ME: health and its dynamics identified and estimated using
SRHS and empirical transition probabilities between health states.

2. Acknowledging ME: true health unobservable; only noisy measures.
Use non-stationary hidden Markov model for health.

ME Model Identification Estimation Algorithm

Figure: Higher persistence of health when taking into account ME.
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Parameters Estimated Inside the Model

We target profiles for assets, hours worked, participation (all by measured
health status), and the coefficients of the FE regression for wages

Parameter Acknowledging ME Ignoring ME

β: bi-annual discount factor 0.76 0.80
γ: CRRA coefficient 3.93 3.71
ν: consumption weight in utility function 0.48 0.46
φP : fixed cost of participation 1,098 1,076
θB : weight on bequest 0.066 0.076
φH : time cost of bad health 1,851 875
C y
min: consumption floor when young 6,927 4,573

Co
min: consumption floor when old 13,776 12,409

a0: constant term of wage profile 2.21 1.92
a1: linear age-term of wage profile 0.005 0.012
a2: quadratic age-term of wage profile −0.005 −0.005
aH : health coefficient of wage profile 0.0224 0.0256

Table Notes. Parameters φ and Cmin should be interpreted in terms of bi-annual hours and
bi-annual GBP, respectively.
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Model Fit: accounting for ME (left), ignoring it (right)

I Similar fit when taking into account and ignoring ME.

I Missing the levels, roughly capturing the trends.

I Some trouble in fitting data due to the initial distribution of states.

Data Profiles Model Fit: Hours & Assets Model Fit: Wage profiles Initial distribution of states
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Results: The Costs of Bad Health

I We follow De Nardi, Pashchenko, and Porapakkarm (2018) and
calculate the costs of bad health as measured by many outcomes.

I The exercise consists of:

1. Simulating the model imposing everyone is always in good health.

→ Individuals’ histories of earnings, hours worked, consumption, assets.

2. Simulating the model letting health evolve according to estimated
transition matrix.

→ Individuals’ histories of earnings, hours worked, consumption, assets.

3. Find differences in annual means between histories in (1) and (2).

I We do this exercise twice (w/ and w/o taking into account ME),
and then find difference in counterfactuals between models.
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The Costs of Bad Health (all individuals)

I Ignoring ME in health leads to substantially underestimating the
costs of bad health for all outcomes (especially for earnings).

I Mainly two forces driving the results:

1. Higher persistence of health when taking into account ME.

2. Higher time costs of bad health when taking into account ME.

Outcome Acknowledging ME Ignoring ME Difference (%)

Earnings 972 456 113%
Hours worked 106 62 71%
Consumption 1,773 1,081 64%
Assets 21,827 16,632 31%

Notes. All variables are means expressed in annual terms. Mean earnings and hours worked
are computed up to age 64 (inclusive). Units of earnings, consumption, and assets are GBP.
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The Costs of Bad Health (initially unhealthy)

I Costs of bad health higher than for the overall population.
(obvious since health is persistent)

I Persistence of health main force behind differences in columns.

If health was iid, the expected time that an initially healthy and an
initially unhealthy would spend in bad health would be more similar
than if health was persistent. (think of differences between tables).

Outcome Taking into account ME Ignoring ME Difference (%)

Earnings 3,962 987 302%
Hours worked 433 127 240%
Consumption 3,822 1,618 136%
Assets 32,047 21,039 52%

Notes. All variables are means expressed in annual terms. Mean earnings and hours worked
are computed up to age 64 (inclusive). Units of earnings, consumption, and assets are GBP.
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Taking Stock
I Question: How important is the imperfect observability of health to

evaluate the costs of bad of health?

I Method:

Estimate a canonical structural life-cycle model of savings and labor
supply with health risk under two assumptions:

1. Health is perfectly observable.

2. Health is not observable, but noise measures are.

Look at costs of bad health (as measured by earnings, hours worked,
consumption and assets) to assess bias introduced by ME in health.

I Findings.

1. Ignoring ME in health leads to underestimating the persistence of
health and the time costs of bad health.

2. This leads to underestimating the costs of bad health by 50–300%.

I Our results suggests that previous studies likely to substantially
underestimate the lifetime costs of bad health.
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Thank You!
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Extra Slides
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Measurement Error Model for Health
1. At each point in time, an individual can be in one of r −1 different

unobserved health states Ht ∈ {1,2, . . . , r }, where r = dead.
E.g., Ht ∈ {Good health (= 1), Bad health (= 2), Dead (= 3)}.

2. Health evolves according to a non-stationary Markov model with
transition matrices {Kt }, where:

Kt(j ,k) := Pt(Ht+1 = k |Ht = j).

3. The econometrician cannot observe true health status (except for
mortality), but can observe at least 3 discrete noisy measures:

Ym
t ∈ {1, . . . ,κm,κm+1}.

Yt =
{

Pain severity, #ADL + #IADL limitations, mobility cond.
}

.

4. The conditional distribution of Ym
t is given by the matrix Pm

t , where

Pm
t (c , j) := P(Ym

t = c | Ht = j)

Back to Intro Back to Estimation
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Our Contributions Back

1. Estimate structural life-cycle model with health risk and ME in
health, taking into account ME in each stage of estimation.

Most papers assume perfect observability of health.

Papers that do not, only partially address ME in health.

I Ignore ME when estimating initial distribution of states, spousal
income, preference parameters (French, 2005; Amengual et al., 2021).

I Impose restrictive parametric assumptions on health dynamics.

I Restrictive identification (French, 2005) or identification not
discussed (Amengual et al., 2021).

I We guarantee identification of the dynamics of health and its
measurement system under less restrictive assumptions.

2. Speak to structural literature.

Previous studies (Capatina, 2015; De Nardi et al., 2018) likely to
highly underestimate lifetime costs of bad health.

Future research needs to worry about ME in health.
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Details: Wages and Spousal Earnings

I Log-wages are:

logWt(Ht , t) = a0 +a1t+a2t
2 +aH1{Ht=Good}+ut ,

where

ut = ρut−1 +ξt , ξt ∼ i .i .d .

I Spousal income is a deterministic function of health and age:

yst =

{
ys(t,Ht), if t 6 Ra+1

0, if t > Ra+1
.

(motivated by the data).

Back
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Details: Tax System

Income taxes(ti , t) =


0, if ti 6 κt1
0.2(ti −κt1), if κt1 < ti 6 κt2
0.2(κt2 −κ

t
1)+0.4(ti −κt2), if κt2 < ti

,

Table: Income Tax Thresholds from O’Dea (2018)

Age
Parameter < 64 64–73 > 74

κ1 16,210 21,000 21,200
κ2 84,940 89,740 89,940

Back
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Details: Pension Benefits

I Public pension benefits are a function of average earnings at 64:

pbbt =

{
g(ae64), t > Ra

0, otherwise
.

I Private benefits also a function of average earnings at age 64:

privbent =

{
f (ae64), t > Ra

0, otherwise
.

Back
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Details: Mean-tested programs
I The government gives transfers to household heads in order to

ensure a minimum level of consumption Cmin,t .

Cmin,t is allowed to depend on age.

This intends to capture the fact that, in the UK, retirees face
different mean-tested programs than non-retirees.

I Government transfers are parametrized as:

trt =


max
{

0,Cmin,t −
[
WtNt +(1+ r)at +ys(t,Ht)

]}
, t < Ra

max
{

0,Cmin,t

−
[
WtNt +(1+ rt)at +ys(t,Ht)+pbbt +privbent

]}
, t > Ra

.

Cmin,t changes at t = Ra:

Cmin,t =

{
C y

min, t < Ra

C o
min, t > Ra

.

Back
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Borrowing and Budget Constraints

I Households face a no-borrowing constraint:

at+1 > 0, ∀t.

I Save at constant interest rate r .

I Hence, the household’s budget constraint is:

ct +at+1 = yt(rat +WtNt)+ys(t,H)+at + trt if t < Ra,

ct +at+1 = yt(rat +WtNt +privbent +pbbt)+ys(t,H)+at + trt if t > Ra.

Back
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Model Solution: Numerical Procedure
I There are four states (apart from age): Assets, health, average

earnings, and the stochastic component of wages.

Health already discrete. Rest are discretized and placed on a grid.

I There two continuous choices: Assets tomorrow and hours worked.

Also discretized and placed on a grid.

I Wage shock discretized using extension to life-cycle models of the
Rouwenhorst method by Fella,Gallipolli and Fan (2019).

This produces a transition matrix and a grid for each age.

I Value function at each age found by backward induction.

Given value function at t+1 problem at t solved by grid search.

I Expectations of the value function are taken using the transition
function for health and for the discretized wage shocks.

I Average earnings tomorrow can be outside the grid =⇒ use linear
interpolation.

Back
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Parameters from the Literature Back

Parameter Value Source

κB : curvature of bequests 650,000 O’Dea (2018)

L: total endowment of bi-annual hours 8,760 12 daily hours
r : interest rate non-housing wealth 0.0323 O’Dea (2018)

Table: Income Tax Thresholds from O’Dea (2018)

Age
Parameter < 64 64–73 > 74

κ1 16,210 21,000 21,200
κ2 84,940 89,740 89,940

Income taxes(ti , t) =


0, if ti 6 κt1
0.2(ti −κt1), if κt1 < ti 6 κt2
0.2(κt2 −κ

t
1)+0.4(ti −κt2), if κt2 < ti

,
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Parameters Estimated Outside the Model Back

I Wage parameters. FE regression:

log(W data
it ) = a0 +a1t+a2t

2 +aH1{Hit=Good}+ηi +uit +mit︸ ︷︷ ︸
=εit

uit = ρuit−1 +ξt , ξ1 ∼ N(0,σ2
ξ,1), ξt ∼ N(0,σ2

ξ,t) ∀t > 1,

mit ∼N(0,σ2
m), ηi ∼ N(0,σ2

η), ηi ⊥ ξt , ∀i , t.

Wage parameters biased due to selection of workers in labor market.

Identification of wage-shock parameters

Minimum Distance Estimates Health Health
Wage-shock parameter (with DLs) (with SRHS)

ρ: autocorrelation 0.8764 0.8790
σ2
η: variance fixed effect 0.0806 0.0775
σ2
ξ,1: variance innovations at t = 1 0.1949 0.1991
σ2
ξ,t : variance innovations at t > 1 0.0581 0.0577
σ2
m: variance measurement error 0.1645 0.1645
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Parameters Estimated Outside the Model Back

I Pension parameters. Estimate parameters that relate public and
private pension benefits with avg. earnnigs with OLS:

pbbi ,65 = ss1aei ,64 + ss2ae
2
i ,64 +εi , for aei ,64 6 âess ,

privbeni ,65 = pp0 +pp1aei ,64 +pp2ae
2
i ,64 +ξi ,

(âess(= 75k): threshold at which quadratic relationship between
pbb and ae starts to decrease.)

Parameter Value S.E.

ss1 0.6518 0.0006
ss2 −3.56E-06 1.31E-08
pp0 5,980.80 591.35
pp1 0.3426 0.0266
pp2 5.23E-07 2.45E-07
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Parameters Estimated Outside the Model

I Spousal earnings. Empirical counterpart of the spousal income
function is given by ys(t,H) = E

[
ysit | Hit

]
. Identification & Estimation with ME

Back
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Average Earnings

Since ELSA starts at age 50, we need retrospective information on
employment and earnings to construct measure of average earnings

I Ideally. Administrative data to obtain average earnings.

Restricted to UK-affiliated researchers.

I Go-around #1. ELSA Life History + ELSA surveys to construct
employment spells and earnings histories since job market entry.

Not very effective in practice.

Imputed average earnings do not exhibit the relationship with pension
benefits documented by many others.

→ Very noisy imputation procedure.

I Go-around #2. ELSA data + data simulated by O’Dea (2018).

O’Dea (2018) provides a good fit of earnings profiles (admin data).

Implicit assumption: our cohort (1950–57) is similar to his (1935–50).
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Imputation of Average Earnings with O’Dea Data
1. Obtain parameters {β̂

j
0, β̂j

1, β̂j
2}

4
j=1, where j indexes household type,

from OLS regression in data simulated by O’Dea (2018):

ae ji ,64 =β
j
0

(
1−1{pbbji ,65 > 29.13k}

)
pbbji ,65 +β

j
11{pbbji ,65 > 29.13k}

+βj
2

(
1−1{pbbji ,65 > 29.13k}

)
privbenji ,65 +ε

j
i . (1)

(Reference group is those receiving more than 29.13k GBP in pbb; for

others, avg. earnings are linear in pbb and privben at 65)

2. Use {β̂
j
0, β̂j

1, β̂j
2}

4
j=1 and similar household classification to generate

aei ,64 for individuals in our sample according to (1) without εji term.

3. Recover average earnings at age 50 from:

ae ji ,64 =
Emp yearsji ,50 ·ae

j
i ,50 +Earnings ELSAj

i

Emp yearsji ,50 +ELSA empl yearsji
.

Back
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Initial Distribution of States

1. Ignoring ME: Obtain initial distribution of states directly from data
(assets, average earnings, health), simulating initial wage-shocks
according to estimated initial distribution of wage shocks.

2. Acknowledging ME:

Use previously-estimated initial probability distribution of true health.

Estimate joint distribution of assets & avg. earnings given true health

I Assume (loga0, logae0) are jointly log-normal given true health(
loga0

logae0

)
∼ N (µH ,ΣH ) .

Use previously-estimated initial distribution of wage shocks.
(assuming these are independent of the rest of states)

Back to Estimation Back to Model Fit
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Identification of ME Model for Health

Mild extension of Garcia-Vazquez (2021) to show that model is identified.

Assumption

A1. Access to three conditionally-independent noisy measures Ym
t of the

unobserved state Ht .

A2. (i) P(Ht+1 | Ht ,Y
1
t ) = P(Ht+1 | Ht) for t = 0, . . . ,T −1.

(ii) P(Y 1
t | Ht+1,Y 1

t+1) = P(Y 1
t | Ht+1) for t = 0, . . . ,T.

A3. Pm
t , the conditional distribution of Ym

t , is full rank for m ∈ {1,2,3}.

A4. The cross-sectional distribution of the underlying state, πt , is such
that πt(c)> 0 for each c ∈ {1, . . . , r }.

A5. ∃i ,m∗ known by the researcher s.t. for row i of matrix Pm∗ we have
Pm∗(i , j) 6= Pm∗(i , j ′) for all columns and Pm∗(i , j) is monotone in j.

Theorem (Identification)

Suppose Assumptions A1–A5 hold. Then the model is identified.
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Identification of ME Model for Health
I Identification idea:

1. Cross-sectional step identifies cross-sectional parameters πt , {P
m
t }.

2. Longitudinal step identifies transition matrices for state, {Kt }
T−1
t=0 .

I Proof. Identification argument for K0,π0,π1, {Pm}m=1,2,3.

From Bonhomme et al. (2016), Theorems 2–3: π0,π1, {Pm}m=1,2,3

are identified. WTS: K0 is identified.

Note that the joint distribution of noisy measure m = 1 at t = 0,1 is:

P(Y 1
0 ,Y 1

1 ) = P1Π0K0Π
−1
1 (P1Π0)

′,

where P(Y 1
0 ,Y 1

1 )(i , j) = P(Y 1
0 = i ,Y 1

1 = j).

Let Ω0 = P1Π0 and Ω1 = Π
−1
1 (P1Π1)

′. Since P1 is full rank (A3):

K0 = (Ω ′0Ω0)
−1Ω ′0P(Y 1

0 ,Y 1
1 )Ω

′
1(Ω

′
1Ω1)

−1.

Since P(Y 1
0 ,Y 1

1 ) is observable and Π0,Π1,P1 are identified, this
completes the proof.

Back
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ME Model: Estimation Algorithm
I First Step of Constrained Baum–Welch:

At each t = 1, . . . ,T restrict the sample to observations that are not
missing or death, i.e., Y 1

t 6= κ1,−7.

Use ML and the EM algorithm to get
√
N-consistent and asymp.

normal estimates of P1 and π̃t = {P(Ht = s | Ht 6= r }s=1,...,r .

For each t, calculate proportion of people that dies between t and
t+1 as:

Prop. of deathst,t+1 = P̂(Y 1
t+1 = κ1 | Y

1
t 6= κ1,−7).

Let
π
Ht 6=r
t+1 =

{
P(Ht+1 = s | Ht 6= r)

}
s=1,...,r

.

A consistent estimate of this object is:

π̂
Ht 6=r
t+1 =

(
ˆ̃πt+1(1−Prop. of deathst,t+1), Prop. of deathst,t+1

)
,

where ˆ̃πt+1 denotes the estimate for π̃t+1.
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ME Model: Estimation Algorithm

I Second Step of Constrained Baum–Welch:

For each t = 1, . . . ,T −1, restrict the sample to observations to those
that are non-missing in t and t+1 and non-death in t.

Estimate Kt iterating between an E and a M step until convergence.

I E step: Let Q1 be the emission matrix for Y 1 expanded to include

mortality. Given estimates for ˆ̃πt , π̂Ht 6=r
t+1 ,Q1, {Ym

i ,τ}τ=t,t+1 and a

guess for K
(h)
t calculate the filtered probabilities:

v̂i ,k,j := P
(
Hi ,t+1 = j ,Hi ,t = k | Y 1

i ,t ,Y 1
i ,t+1, {π̂τ}τ=t,t+1,Q̂1,K

(h)
t

)
.

These filtered probabilities can be computed as:

v̂i ,k,j =
Q̂1(y1

i ,t ,k)π̂t(k)K
(h)(k, j)Q̂1(y1

i ,t+1, j)∑r
j=1

∑r
k=1 Q̂

1(y1
i ,t ,k)π̂t(k)K (h)(k, j)Q̂1(y1

i ,t+1, j)
.
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ME Model: Estimation Algorithm

I M step: Calculate the new guess K
(h+1)
t as:

K
(h+1)
t = arg max

K

N∑
i=1


r∑

k=1

r∑
j=1

vi ,j ,k log
(
K (k , j)

)
s.t.

r∑
j=1

Kt(k , j) = 1, ∀k,

r∑
j=1

Kt(j ,c) ˆ̃πt(j) = π̂
Ht 6=r
t+1 (c)

Back
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Identification of Wage-shock Parameters
I Let

εit = ηi +uit +mit , t = 1, . . . ,T .

denote the residuals from the wage equation (in levels).

I Using recursion on uit (= ρuit−1 +ξt), we can write:

εit = ηi +mit +

t∑
τ=1

ρt−τξτ, t = 1, . . . ,T .

I Identification:

1+ρ=
Cov(εi4 −εi2,εi1)

Cov(εi3 −εi2,εi1)
, σ2

ξ,1 =
Cov(εi4 −εi2,εi1)

ρ(ρ2 −1)
,

σ2
m = (ρ−1)σ2

ξ,1 −Cov(εi2 −εi1,εi1), σ2
ξ,t = Var(εi2 −εi1)−2σ2

m−(ρ−1)2σ2
ξ,1,

σ2
η = Var(εi2)−ρ

2σ2
ξ,1 −σ

2
m−σ2

ξ,t .

I Target (+80) additional statistics of the wage-shock process, to
increase precision of MD estimation.

Back
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Spousal Earnings: Identification & Estimation with ME

I The empirical counterpart of the spousal income function is given by:

ys(t,H) = E
[
ysit | Hit

]
.

I Health is not directly observable, but this can be estimated using
Minimum Distance. Identifying assumption:

Assumption (Exclusion restriction)

E
[
yst | Y

1
t ,Ht = c

]
= E

[
yst | Ht = c

]
.

This amounts to saying: “Given true health, suffering from problems, say,
with mobility conditions does not predict spousal income”
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Spousal Earnings: Identification & Estimation with ME
I Under the exclusion restriction, we can write the expectation of

spousal earnings given Y 1
t as:

E
[
yst | Y

1
t = y

]
=

2∑
c=1

E
[
yst | Ht = c

]
P
(
Ht = c | Y 1

t = y
)
, y = 1, . . . ,κ1.

I This can be written as the following linear system:

P(Y 1
t )

−1P1ΠtE
[
yst | Ht

]
= E

[
yst | Y

1
t

]
,

where:
E
[
yst | Ht

]
: column vector whose i-th element is E

[
yst | Ht = i

]
.

E
[
yst | Y

1
t

]
: column vector whose i-th element is E

[
yst | Y

1
t = i

]
.

P(Y 1
t ): diagonal matrix with cross-sectional distribution of Y 1

t at
each t in the diagonal.

I This system has at most one solution if P1 is full rank and if πt has
non-zero elements for all t. (already required for ME identification)

I Estimation by imposing this linear-system of restrictions in a finite
sample using Minimum Distance. Back
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Data Profiles
I We pool individuals from different birth cohorts and assume that

differences in profiles across cohorts driven solely by cohort effects.

This responds to data limitations.

I Classify individuals in:

19 two-year age groups (from 50–51 to 86–87).

4 cohort groups (born before 1935, born between 1935–1943, born
between 1943–1950, born after 1950).

2 health groups (healthy and unhealthy).

I Run regression

yi ,w = γy ,m
0 +ηy ,m

a +ηy ,m
c +γy ,m

a

(
aiw ×1{Healthm

i =Good}

)
+uy ,m

i ,w ,

y : targeted variable i : individual w : wave
m: health indicator a: age c: cohort

to obtain estimates
{
γ̂
y ,m
0 , {η̂y ,m

a , γ̂y ,m
a }19

a=1, {η̂y ,m
c }4c=1

}
for each y .
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Data Profiles
I Use estimates

{
γ̂
y ,m
0 , {η̂y ,m

a , γ̂y ,m
a }19

a=1, {η̂y ,m
c }4c=1

}
for each (y ,m)-pair

to generate y profiles by health status according to:

y
good health(m)
a = γ̂y ,m

0 + η̂y ,m
a + η̂y ,m

c=4 + γ̂
y ,m
a a, a ∈ {1, . . . ,19},

y
bad health(m)
a = γ̂y ,m

0 + η̂y ,m
a + η̂y ,m

c=4, a ∈ {1, . . . ,19}.

y : targeted variable a: age m: health indicator c: cohort
c = 4 (our cohort; those born in 1950–57)

I The vectors

ygood health(m) =
(
y

good health(m)
1 , . . . ,y

good health(m)
19

)
,

ybad health(m) =
(
y

bad health(m)
1 , . . . ,y

bad health(m)
19

)
,

give the y profiles for our cohort where m ∈ {SRHS,DLs}.
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Model Fit: accounting for ME (left), ignoring it (right)
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Model Fit: Estimated Wage Profiles

I Similar fit for a0 with and without ME (±0.16).

I Better fit for (a1,a2,aH) in model that ignores ME.

log(W data
it ) = a0 +a1t+a2t

2 +aH1{Hit=Good}+ηi +uit +mit

Accounting for ME Ignoring ME
Parameter Data Model Data Model

a0 2.09 2.24 2.1 1.94
a1 0.058 0.003 0.06 0.013
a2 -0.02 -0.004 -0.002 -0.005
aH 0.024 0.002 0.009 0.013
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