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Modeling Pandemics

▶ Typical economic approach:

Treats economic effects of pandemics in exactly the same way as
those of climate change—as global externalities.

▶ Epidemiological approach:

Transmission occurs in meetings.

But have little to say about meetings and economic outcomes.

▶ Our approach:

Model relationship between meetings and economic activity.

Recognize individuals have some control over meetings.

Implies pandemics create local externalities.

Typical economic approach vs. Our approach
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Our Framework

▶ Embed SIR framework in search/matching/wage-posting model.

Types of people who meet each other endogenously determined.

▶ Adopt metaphor of islands from search literature.

Islands characterized by wage menus depending on infection status.

▶ Allows firms to discriminate based on infection status.

▶ Allow individuals to travel across islands over time.
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Controllability and Welfare

▶ Virus exposure controllable if possible to discriminate based on
health status without loss of output.

▶ Welfare thms: If virus exposure controllable, FWT and SWT hold.

Logic: Externalities local with controllability.

▶ If virus exposure not controllable, welfare thms typically do not hold.

Logic: Externalities global without controllability.

▶ With global externalities, conventional wisdom may be incorrect.

Economic activity may be too low rather than too high.
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Rest of the Talk

1. With controllability and perfect observability.

Pandemics as local externalities.

2. Without controllability.

Pandemics as global externalities.

3. With controllability and imperfect observability.

Pandemics as local externalities.
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With Controllability and Perfect Observability
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Model

▶ Discrete-time model, t = 0,1, . . . ,T .

▶ Continuum of unit mass of workers/agents.

Endowed with one unit of time.

Can be in one of three health states (types):

η ∈

 S︸︷︷︸
Susceptible

, I︸︷︷︸
Infected

, R︸︷︷︸
Recovered


Masses µηt .

Types publicly observable.

▶ Continuum of islands.

Island indexed by 0: home island in which no production takes place.

Other islands: work islands in which production takes place.
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Islands

Each island is associated with:

▶ A production technology.

For home island, no production technology exists.

For work islands, one unit of labor generates A units of consumption
good if positive measure of workers. (production requires meetings)

▶ Islands indexed by wage rates, wt = {wSt ,wIt ,wRt }, with CDF F (wt).

Firms choose which island to operate in.

▶ If they operate on wt , they have to pay wage wηt to type η.
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Agents

▶ Endowed with one unit of time.

ℓη(wt): labor allocated by η to island wt ;
∫
ℓη(wt)dF (wt) = 1, ∀η.

▶ Preferences over the final consumption good are given by

U (c) =
T∑

t=0

βtu (ct) .

▶ Infected agents suffer per-period utility cost κ.
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Transmission of the Virus

▶ S → I → R.

▶ Susceptible agents become infected in the process of production.

Production requires meetings between agents.

No infections take place on the home island.

▶ Probability that S agent becomes infected on work island wt :

ψ(λI (wt)) = χλI (wt), where λI (wt) =
µItℓI (wt)

L(wt)

and L(wt)≡
∑
ηµηtℓη(wt) is total labor supply on island wt .

▶ Important issue concerns beliefs of infection prob. when L(wt) = 0.

▶ Infected agents recover with probability α.
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Transmission of the Virus

▶ Aggregate masses of agents evolve according to:

µSt+1︸ ︷︷ ︸
Susceptible
tomorrow

= µSt︸︷︷︸
Susceptible

today

−µSt

∫
wt ̸=w0

ℓS(wt)χ
µItℓI (wt)

L(wt)
dF (wt),︸ ︷︷ ︸

New infections

µIt+1︸ ︷︷ ︸
Infected
tomorrow

= (1−α)µIt︸ ︷︷ ︸
Not recovered

+µSt

∫
wt ̸=w0

ℓS(wt)χ
µItℓI (wt)

L(wt)
dF (wt),︸ ︷︷ ︸

New infections

µRt+1︸ ︷︷ ︸
Recovered
tomorrow

= µRt︸︷︷︸
Recovered

today

+ αµIt .︸ ︷︷ ︸
New recoveries
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Matching Technology

▶ Competitive production firms choose which island to locate in.

Let γ(wt) be the mass of firms on island wt .

Each firm pays κv to enter (= 0 for presentation only.)

▶ Workers and firms on island wt matched via M (L(wt),γ(wt)).

Market tightness θ(wt)≡ γ(wt)/L(wt).

mw (θ(wt)): probability that a worker is matched with a firm.

mf (θ(wt)): probability that a firm is matched with a worker.

▶ Matched firm/worker produce A units of goods per unit of time.

▶ Unmatched workers do not produce, but can get infected.

11 / 34



Allocation

Z =

 µ︸︷︷︸
masses of types

, ℓ︸︷︷︸
labor supply

, c︸︷︷︸
consumption

,

beliefs︷ ︸︸ ︷
Θ︸︷︷︸

market tightness

, λ︸︷︷︸
relative labor supply


Need θ,λ to deal with off-equilibrium-path problems (0/0).

A feasible allocation satisfies:∑
η

µηtcηt ⩽
∫
wt ̸=w0

(∑
η

µηtmw (θ(wt))Aℓη(wt)−γ(wt)κv

)
dF (wt),∫

ℓη(wt) dF (wt) = 1,

λη(wt) =
µηtℓη(wt)

L(wt)
, ∀L(wt)> 0, arbitrary otherwise,

µt+1 = G (µt).
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Controllability in the Model

▶ Extent of virus exposure depends on mix of susceptible and infected
agents in an island.

▶ Productivity same in all islands independent of infection status.

▶ Virus exposure controllable because any mix of susceptible and
infected agents is feasible without loss of output.

Example: Feasible to allocate susceptible agents to a separate island,
all producing A. Susceptible agents not exposed to virus.
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Susceptible Agent’s Decision Problem

Vt (S ,µt) = max
cSt , ℓS(wt)

u (cSt)+β

∫
wt ̸=w0

ℓS (wt)(1−ψ(λI (wt)))Vt+1 (S ,µt+1) dF (wt)

+

∫
wt ̸=w0

ℓS (wt)ψ(λI (wt))
[
−κ+βVt+1 (I ,µt+1)

]
dF (wt)

subject to

cSt ⩽
∫
wt ̸=w0

ℓS (wt)mw (θ(wt))wSt dF (wt),∫
ℓS (wt)dF (wt) = 1.
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Infected Agent’s Decision Problem

Vt (I ,µt) = max
cIt ,ℓI (wt)

u (cIt)−κ+αβVt+1 (R,µt+1)+(1−α)βVt+1 (I ,µt+1)

subject to

cIt ⩽
∫
wt ̸=w0

ℓI (wt)mw (θ(wt))wIt dF (wt),∫
ℓI (wt)dF (wt) = 1.
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Recovered Agent’s Decision Problem

Vt (R,µt) = max
cRt ,ℓR(wt)

u (cRt)+βVt+1 (R,µt+1)

subject to

cRt ⩽
∫
wt ̸=w0

ℓR(wt)mw (θ(wt))wRt dF (wt),∫
ℓR(wt)dF (wt) = 1.
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Competitive Equilibrium

Define the set of active islands by

Γt =
{
wt : ℓη(wt)> 0 for some η ∈ {S , I ,R}

}
.

A CE is an allocation Z , values, and a set of active islands such that:

1. Agents optimize.

2. mf (θ(wt))
∑
ηλη(wt)

(
A−wηt

)
⩽ 0 for all wt (= if wt ∈ Γt).

3. For any wt ∈ Γt ,λη(wt) defined as before.

4. Laws of motion for state µt .

5. limt→∞ βtVt(η,µt)→ 0 for all η.

6. Two refinements.
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Refinements To Discipline Off-Equilibrium-Path Beliefs

For any wt ∈ Γ ct ,

1. If A−wηt > 0 for all η, then mf (θ(wt)) = 0 and mw (θ(wt)) = 1.

2. If V̂t

(
wt ,η,µt ; λ̂t

)
< Vt (η,µt) for all λ̂t , then λη(wt) = 0, where

V̂t

(
wt ,S ,µt ; λ̂t

)
= u (cSt)+ ℓS(wt)ψ

(
λ̂It

)[
−κ+βVt+1 (I ,µt+1)

]
+
(
1− ℓS(wt)ψ

(
λ̂It

))
βVt+1 (S ,µt+1)

is value for S of choosing island wt given beliefs λ̂t .

Similarly for other types: V̂t

(
wt ,η,µt ; λ̂t

)
.
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Equilibrium Characterization

An equilibrium has:

▶ Mixing if there exists wt with ℓS(wt)> 0 and ℓI (wt)> 0.

▶ Sorting if there is no mixing.

▶ Cross-subsidization if there exists some wt and some η,η ′ with

ℓη(wt),ℓη ′(wt)> 0 and

wηt < A and wη ′t > A.

Proposition

Any CE has sorting, no cross-subsidization, and no unemployment.

Informal argument Proof
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Welfare Theorems

In any competitive equilibrium:

▶ All agents consume A.

▶ Susceptible agents never get infected.

▶ Recovered agents can be assigned to any island.

Theorem (FWT)

The competitive equilibrium is Pareto optimal.

Theorem (SWT)

Any PO allocation can be decentralized as a CE with LS taxes/transfers.

Proof
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Multiple Occupations and/or Multiple Commodities

▶ Suppose technology with M different types of labor:

Y = Af (L1, . . . ,LM).

▶ If probability of infection independent of composition of labor types:

Welfare Theorems continue to hold.

▶ Similar results with multiple commodities.
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Efficiency of CE

Two key assumptions drive the efficiency results:

1. Virus exposure controllable.

2. Contracts can be a function of publicly-observed health status.

We now relax these assumptions.
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Without Controllability
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Controllability and Discrimination

▶ Suppose there is only one work island (denoted by 1) and a home
island (denoted by 0).

In the work island, w1ηt = A for all (η, t).

No discrimination restriction.

▶ Allocation z defined as before, with no discrimination restriction.

▶ Same definition of CE, with obvious modifications.
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Efficiency of Equilibrium

Proposition

In the one work-island model, the CE is inefficient.

Proof

Why?

▶ Positive congestion externalities.

▶ Positive congestion externalities are relevant for a wide class of
infection technologies (also with asymptomatic agents).

Robustness: Infection Technology
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Source of Inefficiencies in Static Model
▶ In competitive equilibrium, susceptible agent’s labor supply solves:

max
ℓS∈[0,1]

u
(
ℓSA

)
− ℓSχλ

∗
I (ℓ

∗
S)κ

where λ∗I (ℓ
∗
S) =

µI
µSℓ

∗
S +µI +µR

.

▶ Social planner solves:

maxℓ∗S∈[0,1] u
(
ℓ∗SA

)
− ℓ∗Sχλ

∗
I (ℓ

∗
S)κ

▶ Positive congestion externality. If all susceptible agents increase
labor supply a little bit, reduces infection probability for everyone.

Statics vs. Dynamics
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Recap

▶ Untargeted lockdowns not optimal.

▶ Economic activity can be too low, not too high.

▶ Subsidies for working may increase welfare.
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Without Perfect Observability

26 / 34



Imperfectly-observable Types

▶ So far assumed all infected are “symptomatic”.

▶ Extend model to allow for “asymptomatic” agents.

Infected agents become symptomatic with probability ϕ.

▶ Types: η ∈ {US ,UI , I ,R}.

US : unknown susceptible.

UI : unknown infected (asymptomatic).

US and UI cannot be distinguished, refer as U type.

=⇒ Must receive the same allocation.

R types can be identified even if previously asymptomatic.

▶ Evolution of types Equations .
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Model with Imperfect Observability

▶ Static model with risk-neutral agents for presentation.

▶ Equilibrium definition similar to perfect-observability model.
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Equilibrium Characterization with Imperfect Observability

In any competitive equilbrium:

▶ U and R mix.

▶ I agents on their own.
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Characetization Details: A Pareto Problem

▶ In any Pareto problem, I separated from U.

▶ Consider the following Pareto problem:

All known infected assigned to island 1, consume A.

U types get utility VU .

Trace out the frontier by maximizing welfare of recovered.
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Pareto Problem

VR (VU) = max
{cη,ℓη,π̃η}

cR

subject to ∑
η∈{U,R}

π̃η

[
A

∫
w ̸=w0

ℓη(w)dF (w)− cη

]
⩾ 0

,

cU −

∫
w ̸=w0

[
ℓU(w)1{η=US }

ψ(λI (w))κ−1{η=UI ,I }
κ
]
dF (w)⩾ VU .

▶ Market clearing, π̃η = µη, determines VU .
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Mixing and Efficiency of Equilibrium

Proposition

Any Pareto optimal allocation has mixing of U and R types. Proof

Efficiency of equilibrium.

▶ V (η): max value that type η receives on its own Equations

Proposition

There exists a CE that is efficient and solves the Pareto problem. This
CE has cross-subsidization from U to R agents.

V ∗
U > V (U), VR(V

∗
U)> V (R).

Informal argument Proof sketch
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Infection Probability and Mass of R Agents

▶ Infection probability decreasing in mass of R agents:

ψ(λ∗I (w
∗)) = χ

µUI
ℓU(w∗)

µUℓU(w∗)+µR
.

▶ Result implies social value of vaccines greater than private value.

▶ Results robust to private information.

Details
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Conclusion
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Conclusion

1. With controllability, welfare theorems hold.

Lockdowns not needed.

2. Without controllability, CE not efficient.

Inability to discriminate key for inefficiency.

Conventional wisdom wrong: economic activity in CE too low.

3. With imperfect observability, welfare theorems hold.

CE features cross-subsidization.

Robust to private information.
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Thank You!
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Extra Slides
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Global vs. Local Externality View of Pandemics

Figure: Caption
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Example of Typical Economic Approach

▶ Eichenbaum, Rebelo and Trabandt (2020):

New infections = πC (StC
S
t )(ItC

I
t )︸ ︷︷ ︸

Infections from
consumption

+πN(StN
S
t )(ItN

I
t )︸ ︷︷ ︸

Infections from
work

+πOSt It .︸ ︷︷ ︸
Random
infections

Their notation:

πi : Infectivity rate in activity i ∈ {C ,N,O}.

St , It : Masses of susceptible and infected workers.

C i
t : Consumption expenditures by worker of type i ∈ {S , I }.

N i
t : Hours worked by worker of type i .

With πC = πN = 0 and πO = β, this model nests standard SIR.

▶ Similar approaches used elsewhere in the econ-epi literature.
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Our Approach
▶ Anticipating elements of our environment:

New infectionsj = ℓjS︸︷︷︸
labor supply
of type S

× ψ(λjI )︸ ︷︷ ︸
infection prob.
in location j

ψ(λjI ) = χ︸︷︷︸
infectivity

rate

×
ℓ∗jI I

ℓ∗jSS + ℓ∗jI I + ℓ
∗
jRR︸ ︷︷ ︸

relative mass of I workers

where ℓ∗jι denotes equilibrium labor supply of type ι ∈ {S , I ,R} at j .

▶ Notice the difference between the two approaches:

We embrace the local-externality view of pandemics.

We model more carefully the infection process.

Back
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Proposition 1: Informal Argument

Proposition

Any CE is separating, has no cross-subsidization, and no unemployment.

Informal argument.

▶ Competition and worker mobility imply that wjηt = A.

▶ If there is mixing

S agents will strictly prefer island with slightly lower wage.

Refinement 1: agents match with probability one.

Refinement 2: infected agents will never show up in such islands.

▶ Competition and free entry ensures no unemployment.

Back
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Proof of Proposition 1 (Contradiction + Backward Induction)

Consider the final period T .

▶ No cross-subsidization.

1. Show that wjIT ⩾ A, ∀j ∈ ΓT : ℓjIT > 0. Suppose not. Then,
∃j ∈ Γt : wjIt < A. Now consider j ′ ∈ Γ ct : wj ′IT > wjIT and
wj ′ηT < A, ∀η. From eq. condition 6), mw (θj ′T ) = 1 so η= I str.
better off at j ′ than at j , a contradiction.

2. Similar argument establishes wjRT ⩾ A for all j ∈ ΓT .
3. Use (1)+(2) to show wjST ⩾ A, ∀j ∈ ΓT : ℓjST > 0. Suppose not.

Consider j ′ ∈ Γ ct : wj ′ST > wjST and wj ′ηT < A, ∀η. From eq.
condition 6), mw (θj ′T ) = 1. From eq. condition 7), ℓjIT = 0.
Thus, ψ(λj ′IT ) = 0. =⇒ S str. better off at j ′, a contradiction.

▶ No unemployment.

1. Suppose ∃j ∈ ΓT :mw (θjT )< 1 and ℓjST > 0. Consider
j ′ ∈ Γ ct :mw (θjT )wjST <wj ′ST < A and wj ′η ′T <mw (θjT )wjη ′T , ∀η ′.
By eq. condition 7), ψ(λj ′IT ) = 0. By eq. condition 6, mw (θj ′T ) = 1,
so S better off by switching to j ′, a contradiction.
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Proof of Proposition 1 (Cont.)

▶ No mixing.

1. Suppose ∃j ∈ ΓT : ℓjIT ,ℓjST > 0. Consider j ′ ∈ Γ ct : wj ′ηT < wjηT for
all η and that wjST −ψ(λjIT )κ < wj ′ST . By eq. condition 6),
mw (θj ′T ) = 1. By eq. condition 7), λj ′IT = 0. Hence, S strictly
better off by switching to j ′, a contradiction.

▶ No cross-subsidization, no unemployment and no mixing imply that
VT (S ,µT )⩾ VT (I ,µT ) for all µT .

▶ Next, consider T −1. Use the monotonicity result for V and repeat
all arguments above to show the same is true.

▶ Use backward induction to show that this is true for T −2, . . . ,0.

■
Back
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Proof of SWT
Some notation:

▶ ht = (η0, . . . ,ηt): individual agent’s t-history.

▶ Ht = (µt ,γt−1,Ht−1): aggregate t-history.

▶ Individual allocation rule: zt(ht) =
(
ct(ht),ℓt(ht)

)
.

▶ Firm allocation rule: γt(Ht).

▶ Probability distributions over histories:

πt+1 (ht ,S) = πt (ht−1,S)

(
1−

∫
j ̸=0
ℓjt (ht−1,S)χλjIt

)
dj ,

πt+1 (ht−1,S , I ) = πt (ht−1,S)

∫
j ̸=0
ℓjt (ht−1,S)χλjIt dj ,

πt+1 (ht−1, I , I ) = (1−α)πt (ht−1, I )

πt+1 (ht−1, I ,R) = απt (ht−1, I )

πt+1 (ht−1,R,R) = πt (ht−1,R) .
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Proof of SWT (Cont.)

Given some utility levels
(
V (I ),V (R)

)
, any PO allocations solves:

max
∑
t⩾0

βt
∑
ht

πt (ht | S)

[
u
(
ct (ht | S)

)
−1{ηt=S}

(∫
j ̸=0
ℓjt (ht | S)ψ

(
λjIt
)

dj
)
κ−1{ηt=I }κ

]

subject to

∑
t⩾0

βt
∑
ht

πt (ht | η0)

[∫
j ̸=0
ℓjt (ht | η0)

[
u
(
ct (ht | η0)

)
−1{ηt=I }κ

]]
⩾ V (η0) , η0 ∈ {I ,R}

∑
ht

πt (ht | h0)ct (ht)⩽
∑
ht

πt (ht | h0)

[∫
j ̸=0

mw

(
θjt
)
Aℓjt (ht)dj

]
,

∫
ℓjt (ht)dj = 1,

Probability distributions over histories,

where:
λjIt =

∑
ht
πt (I ,zt−1,ht−1 | h0)µItℓjt (I ,zt−1,ht−1 | h0)∑

η

∑
ht
πt (η,zt−1,ht−1 | h0)µηtℓjt (η,zt−1,ht−1 | h0)

.
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Proof of SWT (Cont.)

1. Using similar arguments to Prop. 1, establish that allocations where
any S gets infected are dominated by allocations where they don’t.
(Assign S agents to an otherwise identical island with no I types).

It follows that no S gets infected in a PO allocation (same as in CE).

2. Since productivity is greater in islands j > 0, no individual placed on
island j = 0. Since κv = 0, the planner can always assign enough
firms to any island so that mw (θjt) = 1 for all j ∈ Γt .

Hence, no unemployment in a PO allocation (same as in CE).

3. Now, pick any feasible levels of consumption {ct(ht)}.

4. By appropriately choosing LS tax/transfers, the result follows.

■
Back
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Evolution of Histories

πt+1 (ht ,S) = πt (ht−1,S)
(
1− ℓt (ht−1,S)χλIt

)
πt+1 (ht−1,S , I ) = πt (ht−1,S)ℓt (ht−1,S)χλIt

πt+1 (ht−1, I , I ) = (1−α)πt (ht−1, I )

πt+1 (ht−1, I ,R) = απt (ht−1, I )

πt+1 (ht−1,R,R) = πt (ht−1,R) .

Back
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Proof of Proposition 4

No cross-subsidization.

1. Define firm profits associated with each type η as:

Πt (η)≡ µηt ×
[
ℓηtA− cηt

]
.

2. Since there is perfect competition, we have
∑
ηµηtΠt(η) = 0.

3. Next, we show that Πt(η) = 0 for each η. Suppose not. Then
∃η : Πt(η)> 0. This implies ∃η̂ s.t. ℓη̂tA− cη̂t > 0. Consider a
deviating firm offering:

c̃ηt = cηt , ∀η ̸= η̂,
c̃η̂t = cη̂t +ε,

where 0< ε < ℓη̂tA− cη̂t and c̃ηt = 0 for all η. Therefore, the
deviating firm makes strictly positive profits, a contradiction.
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Proof of Proposition 4 (Cont.)

I and R supply 1 unit of labor in the work island in all periods.

1. Suppose ℓIt < 1 for some t. By increasing ℓIt , the I type can
increase its utility while leaving the infection cost unchanged.
Hence, ℓIt < 1 contradicts optimality.

This result + no cross-subsidization imply cIt = A for all t.

2. Identical argument for η= R.
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Proof of Proposition 4 (Cont.)

Mixing.

1. Suppose ℓSt = 0 for all t. By no cross-subsidization, cSt = 0 for all t
and firm makes zero profits.

2. Consider:

ℓ̃S0 = ε > 0 and c̃S0 = εA.

Clearly, firm continues to make 0 profits. Change in welfare for S :

∆W(S) = u(εA)−εψ(λ∗It)κ+β
[
1−εψ(λ∗It)

]
V1(S ,S)+βεψ(λ

∗
It)V1(S , I )︸ ︷︷ ︸

utility with some mixing

−
[
u(0)−βV1(S ,S)

]
.︸ ︷︷ ︸

utility with no mixing
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Proof of Proposition 4 (Cont.)

3. Differentiating above expression wrt ε and evaluating at ε= 0:

u ′(0)−ψ(λ∗It)κ+ψ(λ
∗
It)β

[
V1(S , I )−V1(S ,S)

]
.

4. Note that under the original allocation:

V1(S ,S) =
1−βT

1−β
u(0), and V1(S , I )⩾

1−βT

1−β

[
u(A)−κ

]
.

Therefore, the above derivative is bounded from below by:

u ′ (0)−κ+ψ(λ∗It)β

[
1−βT

1−β

(
u (A)−κ−u (0)

)]
.

Since u(A)−κ > u(0), if u ′(0)−κ > 0, this alternative allocation
makes S str. better off.
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Proof of Proposition 4 (Cont.)

5. If u(A)−κ < u(0), then if

u ′ (0)−κ+β

[
1−βT

1−β

(
u (A)−κ−u (0)

)]
> 0,

S agents str. better off.

6. Thus, a sufficient condition for S to be str. better off under such an
alternative allocation is:

u ′(0)−κ >Ω≡max

{
β

[
1−βT

1−β

(
u (A)−κ−u (0)

)]
,0

}
.

7. Under this assumption, S-type agents are strictly better of by
mixing, which is a contradiction.

It then follows that there is mixing in at least one period.

■
Back
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One work-island model: Efficiency of Equilibrium

Proposition

In the one work-island model, the CE is inefficient.

Proof.

1. Compare (susceptible and infected) agents’ problems with the
Pareto problem, restricted to the one work-island case.

2. Note that planner internalizes the effects of the labor allocation on
the infection probability ψ(λIt), but individuals do not.

■
Back
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Generalized Infection Technology

▶ Consider the following generalization of our infection technology:

χ
µItℓIt(

µStℓSt +µItℓIt +µRtℓRt
)2−ϑ .

▶ This technology is similar to that of Acemoglu et al. (2020), and it
nests several special cases:

ϑ= 1: our baseline.

ϑ= 2: standard economic-SIR.

▶ Here, ϑ ∈ [1,2] governs the returns to scale in meetings and can play
a key role in the study of externalities:

ϑ= 1=⇒ CRS.

ϑ ∈ (1,2]=⇒ IRS.
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Generalized Infection Technology

χ
µItℓIt(

µStℓSt +µItℓIt +µRtℓRt
)2−ϑ .

▶ With ϑ= 1, the probability that a particular susceptible agent gets
infected is mediated by the presence of R and S agents.

▶ With ϑ= 2, there is no notion of herd immunity or positive
congestion effects.

▶ A desirable feature of ϑ ∈ (1,2] is that it captures the idea that more
meetings take place in more densely-occupied areas.

▶ No consensus on which technology is more appropriate.

Empirically-relevant estimates of ϑ likely in between 1 and 2.
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We now study how our results depend on ϑ.
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Robustness: Local-Externality View of Pandemics

▶ We now make explicit our (previous) assumption that production
requires a positive mass of agents L.

Otherwise, with IRS infection technologies in a multi-island setup,
equilibrium may fail to exist.

▶ Proposition. Any CE is efficient.

Representative firm allocates workers to J+1 work islands.

J pinned down by L.

Separation of I types from the rest.

π(U)ℓU/J and π(R)/J of U and R workers allocated to each island.

Firm problem identical to Pareto problem.
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Robustness: Global-Externality View of Pandemics (SIR)
▶ In SIR model, with log preferences, CE is inefficient and the result

that aggregate economic activity is too low is robust to ϑ ∈ [1,2).
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▶ ϑ= 2 misses positive congestion externalities (existing literature).
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Robustness: Global-Externality View of Pandemics (UIR)
▶ In UIR model, CE is inefficient, but whether aggregate economic

activity is too high or too low can depend on ϑ ∈ [1,2].
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▶ With ϑ= 2, typically “too much” economic activity (consistent with
existing literature); for most ϑ values, opposite is true. Back
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Statics vs. Dynamics

▶ In static model, susceptible agents always work too little.

By working more, S reduce infection probability for other S agents.

▶ In dynamic model, additional externality.

By increasing its labor supply, S increase flow of newly infected.

Increases probability of future infection.

Race between the static and dynamic externalities.
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Dynamic Model

▶ Only interesting problem is that of susceptible agents, which is:

Vt (S ,µt ,λ
∗
It) = max

cSt , ℓSt
u (cSt)+βℓSt

[
1−ψ(λ∗It)

]
Vt+1

(
S ,µt+1,λ

∗
It+1

)
+ ℓStψ(λ∗It)

[
−κ+βVt+1

(
I ,µt+1,λ

∗
It+1

)]
s.t. cSt ⩽ ℓStA, ℓSt ∈ [0,1] and laws of motion for µt .

Don’t internalize effect of ℓS on current and future infection prob.

▶ FOC:

u ′(cSt)A−ψ(λ∗It)κ−βψ(λ
∗
It)

{
∂Vt+1(S)

∂µSt+1
+
∂Vt+1(S)

∂µIt+1

}
= 0.
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Effect of Small Increase in Labor Supply of S

Total derivative wrt ℓS evaluated at equilibrium allocation:

−ℓ∗Stψ
′(λ∗It)

∂λ∗It
∂ℓ∗S

κ︸ ︷︷ ︸
static component (+)

+β

[
∂Vt+1(S)

∂µIt+1
−
∂Vt+1(S)

∂µSt+1

]
ℓ∗Stχ

∂λ∗It
∂ℓ∗S︸ ︷︷ ︸

dynamic component (+/−)︸ ︷︷ ︸
externality from current infection

+ β
∂Vt+1(S)

∂λ∗It+1

∂λ∗It+1

∂ℓ∗S︸ ︷︷ ︸
externality from future infection (−)
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Two Externalities in Dynamic Model
Externality from current infection.

▶ Static component identical to static model.

Always positive.

▶ Dynamic component due to change in future masses of types.

Typically positive.

Externality from future infection.

▶ Increasing ℓS increases the flow of newly infected agents µStℓSλ
∗
It .

▶ This increases infection probability in the future.

▶ Negative externality.

Overall effect on welfare ambiguous.

Back
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Type Transitions with Asymptomatic Agents

πt+1 (ht−1,US ,US) = πt (ht−1,US)

[
1−

∫
j ̸=0

ljt (ht−1,U)χλIjtdj
]
,

πt+1 (ht−1,US ,UI ) = (1−ϕ)︸ ︷︷ ︸
asymptomatic

πt (ht−1,US)

∫
j ̸=0
ℓjt (ht−1,U)χλIjtdj ,︸ ︷︷ ︸

new infections

πt+1 (ht−1,US , I ) = ϕπt (ht−1,US)

∫
j ̸=0
ℓjt (ht−1,U)χλIjtdj

πt+1 (ht−1,UI ,UI ) = (1−ϕ)(1−α)︸ ︷︷ ︸
Asymptomatic
who not recover

πt (ht−1,UI ) ,

πt+1 (ht−1,UI , I ) = ϕ(1−α)πt (ht−1,UI ) ,

πt+1 (ht−1,UI ,R) = απt (ht−1,UI ) ,

πt+1 (ht−1, I ,R) = απt (ht−1, I ) ,

πt+1 (ht−1,R,R) = πt (ht−1,R) .

Back
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Mixing of U and R types

Proposition

Any Pareto optimal allocation has mixing of U and R types.

Proof. Notice that:

χ

∑
ht−1

πt (ht−1,UI )ℓjt (ht−1,UI )∑
ht−1

∑
η̸=I ,R

[
πt (ht−1,η)ℓjt (ht−1,η)

]︸ ︷︷ ︸
≡ψ(λjIt ;U)

>χ

∑
ht−1

πt (ht−1,UI )ℓjt (ht−1,UI )∑
ht−1

∑
η̸=I

[
πt (ht−1,η)ℓjt (ht−1,η)

]︸ ︷︷ ︸
≡ψ(λjIt ;U,R).

▶ U willing to give some consumption to pool with R.

▶ Mix U and R.

▶ Redistribute from U to R suitably to make both types weakly better
off, with strict inequality for at least one of them.

■
Back
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Autarky Values
For U types:

V (U) =max
∑
t,ht

βtπ(ht | U)
[
u
(
ct (ht)

)
− ℓt

(
ht
)
1{ηt=US }

ψ(λIt)κ−1{ηt=UI }
κ
]

subject to ∑
ht

π(ht | U)
[
ct (ht | U)− ℓt (ht | U)A

]
⩽ 0, ∀t,

λIt =

∑
ht−1

[πt (ht−1,UI )ℓt (ht−1,U)]∑
ht−1

∑
η=U,R

[
πt (ht−1,η)ℓt (ht−1,η)

] .
For R types:

V (R) =
T∑

t=0

βtu (A) .

Back
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Efficiency of Equilibrium

Proposition

There exists a CE that is efficient and solves the Pareto problem. This
CE has cross-subsidization from initial U to initial R agents.

V ∗
U > V (U), VR(V

∗
U)> V (R).

▶ Initial R agents receive consumption > marginal product.

▶ Initial U agents receive consumption < marginal product.

▶ R valuable to initial U agents since lower infection prob.

▶ U agents willing to give up consumption to pool with them.

Back
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Efficiency of CE with Asymptomatic Agents

1. Show: (a) VR(VU) is a decreasing function, (b) VR(V (U))> V (R),

and (c) limVU→∞ =
∑T

t=0β
tu(0).

(a) Follows from inspection of SPP.

(b) Suppose VU = V (U). Redistribute from U to R.

(c) Follows from inspection of SPP.

2. Existence.

In any CE, the best response in terms of relative proportions of initial
U and R agents, ρ(VU) = π̃0(U;VU)/π̃0(R;VU) has a fixed point at
relative population proportion π0(U)/π0(R).

Consider the firm’s programming problem with market utilities(
VU ,VR(VU),V I

)
, and show that ρ̃(VU), the relative proportion that

solves this problem, and show that if VU < VU , ρ̃(VU) =∞ and
ρ̃(VU) = 0 as VU →∞.
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Efficiency of CE with Asymptomatic Agents

2. Existence (cont.).

Since ρ̃(VU) is continuous, ∃V ∗
U : ρ̃(V ∗

U) = π0(U)/π0(R).

At this ρ̃(V ∗
U), the Pareto problem implies firms make zero profits.

No individual firm can profitably deviate =⇒ eq. contract.

3. Efficiency. Note that CE outcomes solve the Pareto problem.

■
Back
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Robustness to Private Information

▶ Suppose R types are publicly known, but the other types are private.

▶ Competitive equilibrium coincides with the earlier one.

R types get paid more than their marginal product.

U types get paid less than their MP.

I types get paid their MP.

No type has incentives to mimic any other type.

Back
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