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Introduction

▶ Last lecture: learned to make cross-country income comparisons

▶ Today: try to understand why some countries much richer than others
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Introduction

▶ Our background:

• Saw that production factors and technology determine an economy’s income:

Y = F (K,L;A)

• Differences in income across countries and over time come from differences in
capital, labor, and technology

• Static focus: given technology and factors, study output at given point in time

▶ Today and next lectures, our focus becomes dynamic: explain why GDP
grows over time and why it grows much faster for some countries

• We do this with Solow growth model
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Environment and Assumptions
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Environment: Households

▶ Closed economy with single good

▶ Discrete time running to an infinite horizon (t = 0, 1, 2, . . .)

▶ Large number of households that will not be optimizing!
▶ Main difference between Solow and Neoclassical growth models

▶ To simplify analysis, assume:

• All households identical→ economy admits representative household

• Households save constant exogenous fraction s ∈ (0, 1) of disposable income

− This is the no-optimizing part on households side
(ie, households don’t decide how much to save)

− It both simplifies and limits analysis
(eg, can’t study effects of tax increase on savings and growth)

• Households own all factors of production and supply labor inelastically
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Environment: Firms

▶ Assume all firms have same production function→ representative firm

▶ Aggregate production function:

Yt = F [Kt, Lt, At] (1)

• Y : final good (think of it as units of real GDP)

• K : capital stock (ie, machines, buildings,…)

• L: labor (eg, population size, labor force size, total hours worked, …)

• A: total factor productivity (TFP)

▶ A is “efficiency” shifter of production function: ↑ A =⇒↑ Y with given K,L
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Environment: Technology

A1: Continuity, Differentiability, Positive and Diminishing Marginal Products, and
Constant Returns to Scale
The production function F : R3+ → R+ is twice continuously differentiable in K

and L, and satisfies

FK(K,L,A) ≡ ∂F (·)
∂K

> 0, FL(K,L,A) ≡ ∂F (·)
∂L

> 0

FKK(K,L,A) ≡ ∂2F (·)
∂K2 < 0, FLL(K,L,A) ≡ ∂2F (·)

∂L2
< 0

Moreover, F exhibits constant returns to scale (CRS) in K and L:

F (λK, λL) = λY, for any λ > 0
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Environment: Technology

A2: Inada Conditions
F satisfies:

F (0, L,A) = 0 and F (K, 0, A) = 0 for K,L,A > 0 (essential inputs)
lim
K→0

FK(K,L,A) = ∞ and lim
K→∞

FK(K,L,A) = 0, for all L,A > 0

lim
L→0

FL(K,L,A) = ∞ and lim
L→∞

FL(K,L,A) = 0, for all K,A > 0

▶ Inada (boundary) conditions ensure the existence of interior equilibria

▶ Assumptions A1 and A2 are “neoclassical technology assumptions”

• Give rise to neoclassical production function
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Environment: Market structure, endowments, market clearing

▶ Assume competitive markets and market clearing
(ie, agents are price-takers and prices clear markets)

▶ Households own all labor and supply it inelastically
(ie, all labor put to work unless its rental price is 0!)

▶ Endowment of labor assumed equal to population size, Lt

▶ Labor market clearing condition given by

Lt = Lt, for t = 0, 1, 2, . . .

▶ Rental price of labor, the wage rate, denotedWt. Then it must be satisfied,

Lt ≤ Lt, Wt ≥ 0, and
[
Lt − Lt

]
Wt = 0

Employed labor must be lower than population size, wage must be non-negative, and either
the labor market clears or the wage is zero 8 / 74



Environment: Market structure, endowments, market clearing

▶ Households own all capital and rent it to firms at rental rate Rt

▶ Capital market clearing condition given by

Kt = Kt, for t = 0, 1, 2, . . .

▶ We take initial capital endowments K0 ≥ 0 as given

▶ Capital depreciates at exponential rate δ ∈ (0, 1)

• 1 unit of capital today is equivalent to 1− δ units tomorrow

▶ Loss of capital affects interest rates (return to savings of households):

rt = Rt − δ
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Environment: Firm optimization

▶ Problem of the representative firm is to choose K,L to maximize profits:

max
Kt≥0,Lt≥0

Πt ≡ PtYt︸︷︷︸
revenues

−WtLt −RtKt︸ ︷︷ ︸
costs

s.t. Yt = F [Kt, Lt, At]

▶ Important to notice:
1. Maximization problem imposes competitive markets
(firms take factor pricesWt and Rt as given)

2. Can normalize price of final good, Pt = 1, in all periods
(final output is the numeraire)

3. Can substitute Y into the profits equation Π
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Firm optimization

Hence, can write:

max
Kt≥0,Lt≥0

Πt ≡ F [Kt, Lt, At]︸ ︷︷ ︸
revenues

−WtLt −RtKt︸ ︷︷ ︸
costs

▶ Given properties of F (A1–A2), we can take FOCs to obtain (interior) solution:
∂Πt

∂Kt
= 0 =⇒ Rt = FK [Kt, Lt, At] (2)

∂Πt

∂Lt
= 0 =⇒ Wt = FL[Kt, Lt, At] (3)

With competitive markets, rental rates equal to marginal (revenue) products

▶ Solving for Kt and Lt we can derive demand for capital and labor
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Fundamental law of motion

▶ K depreciates exponentially at rate δ and grows with investment I ≥ 0.
Capital’s law of motion:

Kt+1︸ ︷︷ ︸
capital tomorrow

= (1− δ)Kt︸ ︷︷ ︸
today’s undepreciated capital

+ It︸︷︷︸
today’s investment

(4)

▶ In closed economy, abstracting from the government:

Yt = Ct + It, (5)

where Ct denotes consumption.

▶ Whatever is not consumed is invested:

St = It = Yt − Ct
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Fundamental law of motion

▶ Solow’s behavioral rule: HHs save constant fraction s ∈ (0, 1) of income:

St = It = sYt (6)

Ct = (1− s)Yt (7)

▶ Equation (4) can be rewritten as

Kt+1 = (1− δ)Kt + sYt

= (1− δ)Kt + sF [Kt, Lt, At] (8)

▶ This equation is the fundamental law of motion in Solow’s growth model

▶ Equation (8) together with the laws of motion of Lt and At describe the
equilibrium in the Solow growth model
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Equilibrium
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Definition of Equilibrium

▶ Solow model combines features of Keynesian models (ie, behavioral rules)
and modern macro approaches (ie, optimization & market clearing)

Definition of Equilibrium
In the basic Solow model for a given sequence of {Lt, At}∞t=0 and an initial capital
stock K0, an equilibrium path is a sequence of capital stocks, output levels,
consumption levels, rental rates and wages {Kt, Yt, Ct, Rt,Wt}∞t=0 such that Kt

satisfies equation (8), Yt is given by equation (1), Ct is given by equation (7), and
Rt andWt are given by equations (2) and (3), respectively.

▶ Equilibrium is an “entire path” of allocations and prices, not a static object!
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Theoretical Analysis
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National accounting in the Solow model

▶ Remember Euler’s theorem? With it and FOCs from firm’s problem, we can
now establish our first result!

Simplified version of Euler’s Theorem
Suppose A1 holds and markets are competitive. Then, in the equilibrium of the
Solow model, firms make no profits and the following equation holds:

Yt = WtLt +RtKt (9)

▶ Factor shares obtained dividing both sides of (9) by Yt:

ΛLt + ΛKt = 1 =⇒ ΛKt = 1− ΛLt
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Equilibrium without population growth and technological progress

▶ Two simplifying assumptions:
1. No population growth: Lt = L > 0 for all t = 0, 1, 2, . . .
2. No technological progress: At = A > 0 for all t = 0, 1, 2, . . .

▶ Study economy in “per capita” terms. Using tildes to denote per-capita vars:

Capital-labor ratio : k̃t :=
Kt

L

Output per capita : ỹt := Yt/L

= F

[
Kt

L
, 1, A

]
(by CRS)

= f(k̃t, A)

Since there is no technological progress, A is constant and can be omitted.
Ie, ỹt = f(k̃t) (Capital-labor ratio entirely determines output per capita in this economy) 16 / 74



Graphical representation: per-capita production function and investment
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Equilibrium without population growth and technological progress

▶ Assume Cobb–Douglas production function:

Yt = AKα
t L

1−α, α ∈ (0, 1)

(Clearly satisfies neoclassical technology assumptions A1–A2)

▶ Expressing output in per capita terms:

ỹt = Ak̃αt

▶ FOC wrt k̃ yields rental rate of capital:

Rt =
dỹt

dk̃t
= αAk̃α−1t

▶ Wage obtained applying Euler’s theorem:

Wt = ỹt −Rtk̃t

= (1− α)Ak̃αt 18 / 74



Equilibrium without population growth and technological progress

▶ Same results with original production function

▶ Rental rate of capital:

Rt =
∂Yt

∂Kt
= αAKα−1

t L1−α

= αA(k̃tL)
α−1L1−α (using Kt = k̃tL)

= αAk̃α−1t

▶ Wage:

Wt =
∂Yt

∂L
= (1− α)AKα

t L
−α

= (1− α)Ak̃αt

(Can verify Euler’s theorem using theseWt and Rt)
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Equilibrium without population growth and technological progress

▶ Recall fundamental role of capital: ỹt = f(k̃t)

▶ Can also rewrite capital’s law of motion in per-capita terms:

Kt+1 = (1− δ)Kt + sF (Kt, L,A)

⇐⇒ Kt+1
L

= (1− δ)
Kt

L
+ s

F (Kt, L,A)

L

⇐⇒ k̃t+1 = (1− δ)k̃t + sf(k̃t) (10)

Definition of steady-state equilibrium
A steady-state equilibrium without technological progress & population growth
is an equilibrium path in which k̃t = k̃∗ for all t (ie, constant capital-labor ratio)

▶ Economy will approach steady-state (ss) equilibrium over time
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Finding the steady-state capital per worker

▶ In steady state, capital per worker doesn’t grow: k̃t = k̃∗ for all t

▶ Can find steady-state capital per worker k∗ using capital’s law of motion

k̃t

k̃t+1 45◦ line (k̃t+1 = k̃t)

(1− δ)k̃t + sf(k̃t)

k̃∗

k̃∗

0
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Finding the steady-state capital per worker

▶ In steady state, capital per worker doesn’t grow: k̃t = k̃∗ for all t

▶ Can find steady-state capital per worker k∗ using capital’s law of motion:

k̃∗ = (1− δ)k̃∗ + sf(k̃∗)

▶ Solution is a fixed point to this equation. Two candidates:
1. k̃∗ = 0 has no economic interest (we rule it out by assumption k̃0 > 0)

2. k̃∗ > 0: positive interesection of (1− δ)k̃ + sf(k̃) curve with 45◦ line

▶ Solution characterization:
f(k̃∗)

k̃∗
=

δ

s
⇐⇒ sf(k̃∗)︸ ︷︷ ︸

ss investment

= δk̃∗︸︷︷︸
ss depreciation
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Steady-state capital per worker, investment, and depreciation

In steady state, capital per worker doesn’t grow: k̃(t) = k̃∗ for all t
This only happens when investment (̃i = sf(k̃)) equals depreciation (δk̃)
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Steady-state equilibrium without technological progress and population growth
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Equilibrium characterization

Equilibrium characterization
Under assumptions A1 and A2, there exists a unique steady-state equilibrium in
the Solow model where the capital-labor ratio 0̃ < k∗ < ∞ satisfies

f(k̃∗)

k̃∗
=

δ

s

output per capita is
ỹ∗ = f(k̃∗) (11)

and consumption per capita is

c̃∗ = (1− s)f(k̃∗) (12)

▶ Existence and uniqueness of equilibrium guaranteed by assumptions A1–A2
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Examples where existence and uniqueness of equilibrium fails

▶ Panels A and B: No equilibrium with k̃∗ > 0 (violate A2, Inada conditions)

▶ Panel C: Multiple equilibria where k̃∗ > 0 (violates A1, decreasing MPs)
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Comparative statics

▶ Countries with higher saving rates (↑ s) and better technologies (↑ A)
will have higher capital-labor ratios (↑ k̃∗) and will be richer (↑ ỹ∗)

▶ Countries with greater technological depreciation (↑ δ) will have lower
capital-labor ratios (↓ k̃∗) and will be poorer (↓ ỹ∗)

▶ The same is true for consumption c̃∗ (since it is a linear function of output per worker)
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The golden rule

▶ There is unique saving rate, sgold, that maximizes steady-state consumption
• This savings rate found by taking the derivative of c̃∗ wrt s
• Step 1. Write steady-state c̃∗ as function of s:

c̃∗(s) = (1− s)f(k̃∗(s))

= f(k̃∗(s))− δk̃∗(s) (using sf(k̃∗) = δk̃∗)

• Step 2. Differentiate wrt s:
∂c̃∗(s)

∂s
=
[
f ′(k̃∗(s))− δ

] ∂k̃∗
∂s

▶ The golden rule of savings states that the saving rate sgold must be such that
∂c∗(sgold)

∂s
= 0
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The golden rule

The golden-rule savings rate maximizes steady-state consumption
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The golden rule

▶ The golden rule savings rate sgold is such that, at that rate, steady-state
consumption is maximized. That is,

∂c∗(sgold)

∂s
= 0

▶ Following result follows:

Result
In the basic Solow growth model, the highest level of steady-state consumption is
reached at sgold, and the corresponding steady-state capital level k̃∗gold such that

f ′(k̃∗gold) = δ (13)
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The golden rule

Highest level of steady-state consumption reached at sgold:
c̃∗(sgold) = (1− sgold)f(k̃gold)

savings rate, s

consumption, c̃∗

s̃∗gold

(1− sgold)f(k̃gold)

0 1
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The golden rule

When economy is below k̃∗gold, a higher saving rate will increase consumption;
Above k̃∗gold, consumption can be raised by saving less (dynamic ineffiency)

savings rate, s

consumption, c̃∗

s̃∗gold

(1− sgold)f(k̃gold)

0 1

32 / 74



Transitional dynamics

▶ Equilibrium path refers to entire path of capital stock, output, consumption
and factor prices

▶ To see how the equilibrium path looks like we need to study the transitional
dynamics of equation (10), starting with arbitrary capital-labor ratio, k̃0 > 0

▶ We are often interested only in the steady state equilibrium

▶ Let’s look at transitional dynamics graphically…
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Transitional dynamics

k̃t

k̃t+1 45◦ line

(1− δ)k̃t + sf(k̃t)

k̃∗

k̃∗

0 k0 k̃′
0

▶ Capital deepening: Starting at k̃0 < k̃∗, economy grows until k̃∗, so that
capital-labor ratio increases (and also income per capita)

▶ If economy instead starts at k̃′
0 > k̃∗, economy decumulates capital until k̃∗,

so capital-labor ratio decreases (and so does income per capita)
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An Example: Cobb–Douglas Technology

▶ Suppose Yt = AKα
t L

1−α, where α ∈ (0, 1)

▶ In steady state:

ỹ∗ = f(k̃∗)

= Ak̃∗
α

= A

{(
sA

δ

) 1
1−α

}α

(k̃∗ from solving ∆k̃∗ = 0)

= A
1

1−α

(s
δ

) α
1−α

c̃∗ = (1− s)ỹ∗

= (1− s)A
1

1−α

(s
δ

) α
1−α
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Summary of Solow model without population growth and tech. progress

▶ Basic Solow model has very nice properties:

• Unique and stable steady state
• Simple comparative statics

▶ …but so far has no growth: in steady state, there is no growth in capital-labor
ratio (k̃∗) and no growth in output per capita (ỹ∗)

▶ Solow model without technological progress can only explain growth during
the transition phase (when k̃ < k̃∗)

• Growth slows down and eventually comes to a halt!

▶ Although not in most desirable manner, Solow’s model can account for
sustained growth with exogenous technological change
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Equilibrium with population growth

▶ One tweak to basic model: add exogenous population growth

Lt+1 = (1+ n)Lt ⇐⇒ ∆Lt+1
Lt

= n

where n ≥ 0 is the population growth rate and L0 > 0 given

▶ Fundamental law of capital accumulation:

Kt+1 = (1− δ)Kt + sYt (14)

▶ By definition, capital-labor ratio and output per capita:

k̃t =
Kt

Lt
and ỹt =

Yt
Lt
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Equilibrium with population growth

▶ Taking logs and differentiating both sides of k̃t = Kt/Lt wrt time yields: details

∆k̃t+1

k̃t
=

∆Kt+1
Kt

− ∆Lt+1
Lt

=
sYt − δKt

Kt
− n (using ∆Kt+1 = sYt − δKt and ∆Lt+1/Lt = n)

= s
Yt
Kt

− (δ + n)

= s
ỹtLt

k̃tLt

− (δ + n) (using Kt = k̃tLt and Yt = ỹtLt)

= s
ỹ(t)

k̃(t)
− (δ + n) (15)
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Equilibrium with population growth

▶ Rearrange equation (15) to get law of motion in per capital terms:

∆k̃t+1 = sỹt − (δ + n)k̃t (16)

▶ Three remarks:

• Investment per worker (sỹ) increases capital per worker (k̃)
• Depreciation (δ) and population growth (n) reduce capital per worker (k̃)
• Previous version of Solow model nested here for special case n = 0

▶ Can solve model with these equations and definition of steady state:

• Graphically
• Analytically
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Equilibrium with population growth: Graphical solution

▶ In steady state, the capital-labor ratio is constant:

∆k̃t+1 = 0 =⇒ sỹ∗ = (δ + n)k̃∗

▶ The steady-state level of investment per capita (sỹ∗) is (δ + n)k̃∗

Steady-state investment makes up for depreciated capital and population growth
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Equilibrium with population growth: Analytical solution

▶ In steady state, the capital-labor ratio is constant:

∆k̃t+1 = 0 =⇒ f(k̃∗)

k̃∗
=

δ + n

s

▶ With Cobb–Douglas production function:

ỹ∗ = Ak̃∗
α

= A

(
sA

δ + n

) α
1−α

= A
1

1−α

(
s

δ + n

) α
1−α

c̃∗ = (1− s)ỹ∗
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Summary of Solow model without technological progress

▶ Adding population growth hasn’t changed basic features of the model:
• Unique and stable steady state
• Simple comparative statics

▶ New insights:
• To replenish the capital-labor ratio, investment must be determined by
considering both depreciation of physical assets and population growth

• Richer countries have higher savings/investment rates, higher levels of
technology, and lower depreciation- and population growth rates

▶ Same old problems. Solow model can still not explain sustained growth
• No per-capita growth once economy reaches steady state: Y grows, ỹ doesn’t
• Growth in per-capita terms slows down and eventually comes to a halt!
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The growth slowdown

▶ Recall capital accumulation equation (15):

∆k̃t+1

k̃t
= s

ỹt

k̃t
− (δ + n)

▶ With Cobb-Douglas production function:

∆k̃t+1

k̃t
= sAk̃α−1t − (δ + n)

▶ Growth rate of capital-labor ratio k̃ declines over time as k̃ rises since α < 1

d

dk̃

(
∆k̃

k̃

)
= (α− 1)sAk̃α−2 < 0

▶ Given that ỹ is proportional to k̃, ỹt = f(k̃t), the same is true for ỹ
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The growth slowdown: Graphical representation

The further below (above) the economy is from the steady state k̃∗,
the faster the economy grows (de-grows)

k̃

δ + n

s ỹ

k̃
= sAk̃α−1

k̃∗0

∆k̃/k̃ > 0

∆k̃/k̃ < 0

Figure 1: Transitional dynamics with Cobb–Douglas function and no tech. change 44 / 74



Convergence

▶ Using a Cobb–Douglas production function, we established that the further
below an economy is from its steady state, the faster it grows

▶ This result is also true for more general (neoclassical) production functions:
smaller values of k̃ associated with larger values of g̃k

▶ Does this result mean that economies with lower capital per worker tend to
grow faster? Or, in other words, that there is convergence across countries?

▶ It depends!

• If economies structurally similar (ie, same values for s, n, δ, A and same
technology f ), then yes: they share same steady-state values k̃∗ and ỹ∗

• If economies not structurally similar, they don’t need to converge:
they have different steady-state values k̃∗ and ỹ∗
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Conditional convergence

▶ Consider two economies—one rich, one poor—that are structurally similar
(ie, same s, n, δ, A, f ), but have different initial conditions: k̃rich0 > k̃poor0 > 0

▶ Model predicts less-advanced economy will exhibit higher growth rate gk̃

k̃

δ + n

sf(k̃)/k̃

k̃∗k̃
poor
0 k̃rich0

g
poor
k̃

grich
k̃
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Divergence

▶ Consider two economies—one rich, one poor—that aren’t structurally similar
(in that srich > spoor) and have different initial conditions: k̃rich0 > k̃poor0 > 0

▶ Model predicts rich country grows further apart from poor country if rich
country further away from its steady state than poor country; ie, grich

k̃
> gpoor

k̃

k̃

δ + n

spoor · f(k̃)/k̃

srich · f(k̃)/k̃

k̃∗
poor k̃∗

richk̃
poor
0 k̃rich0

g
poor
k̃

grich
k̃
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Conditional vs. absolute convergence

▶ Two types of convergence:

• Conditional convergence: economies with lower starting values of capital-labor ratio
will exhibit higher per-capita growth rates and will thereby tend to catch up with initially
richer countries when economies are structurally similar

• Absolute convergence: poorer countries tend to grow faster than richer ones even
when they are not structurally similar

▶ Because absolute convergence is a less restrictive form of convergence, it is
harder to observe it in practice

▶ Let’s see if the data supports any of these notions of convergence!
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Convergence in the data

Empirical evidence supports conditional convergence, not absolute convergence

Figure 2: Convergence across countries, 1960–2011. All countries (left), OECD economies (right)
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Convergence in the data

Empirical evidence supports conditional convergence

Figure 3: Convergence across US states, 1880–2000
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Convergence in the data

Empirical evidence supports conditional convergence

Figure 4: Convergence across Japanese prefectures, 1930–1990
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Adding technological progress

▶ Adding pop. growth to basic model doesn’t solve fundamental problem:

• Model can still not account for sustained growth
− Once steady state reached, output per capita ỹ∗ doesn’t grow

• This is at odds with empirical evidence
− With given inputs, society produces more output per capita today than in past:

ỹ(k̃)2024 > ỹ(k̃)1800

▶ To address this problem, we add technological progress to model

52 / 74



Adding technological progress

▶ Two tweaks to basic model:

• Population growth: Lt+1 = (1+ n)Lt, where L0 > 0

• Technological progress: At+1 = (1+ gA)At, where A0 > 0

▶ Importantly, we treat tech. progress as exogenous (“manna from heaven”):
economic agents cannot influence it!

• Again, this is at odds with reality: technology developed with R&D
• But it is a useful first step
• More advanced models feature endogenous tech. progress
(Romer 1990, Gorssman–Helpman 1991, Aghion–Howitt 1992, Jones 1995, Acemoglu 2002, …)

• But these models are beyond our scope
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Adding technological progress: BGP and Harrod-neutral tech. progress

▶ How to introduce technology A into production function F ?

• Three options: Hicks-neutral, Solow-neutral, Harrod-neutral tech. progress
• Standard approach is to choose one that generates balanced growth path (BGP)
• BGP: allocation where output grows at a constant rate and capital-output ratio,
interest rate, and factor shares remain constant (in line with Kaldor facts)

▶ Important result (due to Uzawa 1961) establishes that only Harrod-neutral or
labor-augmenting technological progress can generate balanced growth

▶ Thus, we now consider production functions:

Yt = F
[
Kt, AtLt

]
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Equilibrium with population growth and technological progress

▶ Capital’s fundamental law of motion:

∆Kt+1 = sF
[
Kt, AtLt

]
− δKt

▶ Convenient to analyze economy in “effective” or “efficiency” units of labor.
Capital-labor ratio in effective units (using hat notation):

k̂t :=
Kt

AtLt

▶ Taking logs, differentiating wrt time, and approximating: details

∆k̂t+1

k̂t
=

∆Kt+1
Kt

− ∆At+1
At

− ∆Lt+1
Lt

=
∆Kt+1
Kt

− gA − n
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Equilibrium with population growth and technological progress

▶ Output per effective unit of labor:

ŷt :=
Yt

AtLt

= F

[
Kt

AtLt
, 1
]

≡ f
(
k̂t
)

▶ Income per capita:

ỹt :=
Yt
Lt

= Atŷt

= Atf(k̂t)

▶ Now, even if ŷt constant, income per capita ỹt grows because At grows!
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Equilibrium with population growth and technological progress

▶ With technological progress, we no longer look for steady state but for
balanced growth path, where income per capita grows at constant rate
• Transformed variables ŷt, k̂t remain constant
• So BGP can be thought of as steady state of transformed model
• This explains why in such models economists use “BGP” and “steady state” interchangeably

▶ Back to our expression:
∆k̂t+1

k̂t
=

∆Kt+1
Kt

− gA − n

=
sYt − δKt

Kt
− gA − n (substituting ∆Kt+1)

= s
Y (t)

K(t)
− (δ + gA + n)
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Equilibrium with population growth and technological progress

▶ We can now use k̂ ≡ K/(AL) to write:
∆k̂t+1

k̂t
= s

Yt

k̂tAtLt

− (δ + gA + n)

= s
ŷ(t)

k̂(t)
− (δ + gA + n) (using ỹ = Y/(AL))

▶ We can now write the law of motion for capital in effective units:

∆k̂t+1 = sŷt − (δ + gA + n)k̂t (17)

▶ Three remarks:
• Investment in effective units (sŷ) increases effective capital per worker (k̂)
• Depreciation (δ), technological progress (gA), and population growth (n)
reduce effective capital per worker (k̂)

• Previous model versions nested here when gA = 0 and/or n = 0
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Equilibrium with population growth and technological progress

▶ Law of motion for capital in effective units:

∆k̂t+1 = sŷt − (δ + gA + n)k̂t

▶ A steady state or BGP is now defined as an equilibrium in which the effective
capital-labor ratio, k̂t is constant overtime—that is, ∆k̂t+1 = 0

▶ Let’s solve the model:

• Graphically

• Analytically
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Equilibrium with population growth and technological progress

▶ In steady state:

∆k̂t+1 = 0 =⇒ sŷ∗ = (δ + gA + n)k̂∗

▶ The steady-state level of investment in effective units (sŷ∗) is (δ + gA + n)k̂∗

Steady-state investment makes up for depreciated capital, pop. growth, and tech. progress

Capital per effective worker, k̂

Investment
(δ + gA + n)k̂

sf(k̂)

k̂∗

sŷ∗

0
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Equilibrium with population growth and technological progress

▶ Transitional dynamics: If economy is below (above) its steady state, the
effective capital-labor ratio will increase (decline) until k̂∗ is reached

▶ Once steady-state effective capital-labor ratio k̂∗ is reached, economy grows
along balanced growth path

Capital per effective worker, k̂

Investment
(δ + gA + n)k̂

sf(k̂)

k̂∗

sŷ∗

0 k̂0

61 / 74



Example: Cobb–Douglas production

▶ With Cobb–Douglas production ∆k̂t+1 = 0 yields:

sŷ∗ = (δ + gA + n)k̂∗ ⇐⇒ s(k̂∗)α = (δ + gA + n)k̂∗

▶ Solving for k̂∗:

k̂∗ =

(
s

δ + gA + n

) 1
1−α

▶ Substituting k̂∗ into ŷ∗:

ŷ∗ =

(
s

δ + gA + n

) α
1−α
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Example: Cobb–Douglas production

▶ Output per capita along BGP

ỹ∗t = Atŷ
∗

= At

(
s

δ + gA + n

) α
1−α

= (1+ gA)
tA0 ×

(
s

δ + gA + n

) α
1−α

depends on initial level of technology A0 and time t, as well as on savings
rate s, depreciation rate δ, rate of tech. progress gA, and rate of pop. growth n

▶ Level vs. growth effects: Changes in investment, depreciation, or pop. growth
rates affect long-run level of output per capita, not its long-run growth rate
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Comparative dynamics

▶ Shocks to the investment rate: an increase (decrease) from s to s′ moves the
economy to a higher (lower) steady state k̂∗∗

k̂0

(δ + gA + n)k̂

sf(k̂)

s′f(k̂)

k̂∗ k̂∗∗ 64 / 74



Comparative dynamics

▶ Shocks to the investment rate: an increase (decrease) from s to s′ moves the
economy to a higher (lower) steady state k̂∗∗

• At initial k̂∗, investment exceeds amount needed to keep k̂∗ constant, so k̂ rises

• Increase in s raises the growth rate temporarily (along the transition to k̂∗∗)

k̂0

(δ + gA + n)k̂

sf(k̂)

s′f(k̂)

k̂∗ k̂∗∗ 64 / 74



Comparative dynamics

▶ Prior to increase in savings rate s, output per worker grew at rate gA

▶ When savings rate increases at t∗, output per capita ỹ grows more rapidly
until economy reaches new steady state, when growth rate returns to gA

time, t

∆ỹ/ỹ

0

gA

t∗

Figure 5: Effect of an increase in the savings rate on growth rate of output per capita 65 / 74



Comparative dynamics

▶ Policy changes don’t have long-run growth effects, only level effects

time, t

ln ỹ

Long-run
level effect

Short-run
growth effects

t∗

Figure 6: Level effects in the Solow model 66 / 74



Comparative dynamics

▶ Shocks to the population growth rate: an increase (decrease) from n to n′

moves the economy to a lower (higher) steady state k̂∗∗

k̂0

(δ + gA + n)k̂

(δ + gA + n′)k̂

sf(k̂)

k̂∗k̂∗∗ 67 / 74



Comparative dynamics

▶ Shocks to the population growth rate: an increase (decrease) from n to n′

moves the economy to a lower (higher) steady state k̂∗∗

• At initial k̂∗, investment is too low to keep k̂∗ constant, so k̂ declines

• Increase in n lowers the growth rate temporarily (along the transition to k̂∗∗)

k̂0

(δ + gA + n)k̂

(δ + gA + n′)k̂

sf(k̂)

k̂∗k̂∗∗ 67 / 74



Summary of Solow model with population growth and technological progress

▶ With tech. progress, Solow’s model can account for sustained growth

▶ Key takeaways:
1. Capital accumulation determined by savings rate (s), depreciation rate (δ), rate
of technological progress (gA), and population growth rate (n)

2. Richer countries (↑ ỹ) have higher savings rates (↑ s), better technology (↑ A0),
more tech. progress (↑ gA), lower depreciation (↓ δ), lower pop growth rate (↓ n)

3. Gvt policy may have long-run level effects, but no long-run growth effects
(eg, increase in savings rate, reduction in pop growth rate, …)

▶ Main problem of Solow model is that all key variables (savings rate,
depreciation rate, pop growth rate, rate of tech. progress) are exogenous
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Beyond Solow’s Model
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Other perspectives on population growth

▶ According to the Solow model, population growth is bad for econ growth:
it reduces output per worker by leading to lower capital-labor ratios

▶ Other perspectives:

• Malthus (1798) highlighted interaction of population with natural resources
− Argued population grows geometrically while means of subsistence linearly

− Result is scarcity and famine: not enough food to feed people

− Perceived technological progress as temporary and unsustainable:
population would grow in response to it, keeping people in a poverty trap!

− As later in Solow’s model, population growth is bad for economic growth
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Other perspectives on population growth

▶ According to the Solow model, population growth is bad for econ growth:
it reduces output per worker by leading to lower capital-labor ratios

▶ Other perspectives:
• Romer (1990), Kremer (1993), and others highlighted interaction of population
with technology

− Basic idea is that technological progress depends on technological breakthroughs

− More people means more potential inventors (ie, 1 Elon Musk per million)

− The larger the population, the faster technology advances and economy grows

− Kremer provides evidence in favor of this, using data from 1 million BC to 1990

− Contrary to Solow’s model, population growth is great for economic growth
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Augmenting the Solow model

▶ Solow model can be augmented in multiple ways
(adding human capital, a role for the government, international trade, …)

▶ Mankiw, Romer, and Weil (1992) emphasized the role of human capital:

• Different countries have different levels of education, skills, know-how, …

• They extended production function to accommodate this: Y = F
[
K,H,AL

]
• Model highlights human capital investments as growth-enhancing mechanism
• Augmented model:

− Fits data much better than original Solow model

− Suggests 70% of cross-country income differences due to differences in physical
and human capital
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Insights from modern growth models

New growth theory:

▶ Endogenizes technological progress and emphasizes innovation
• Product-variety models: innovation causes productivity growth by creating
new—not necessarily improved—varieties (eg, Romer 1990, Jones 1995)

• Schumpeterian-growth models: innovation leads to creative destruction and
growth (eg, Aghion and Howitt 1992, and co-authors)

▶ Thinks of countries as parts of a whole rather than isolated units
• Technology adoption and skill mismatch (Acemoglu and Zilibotti 2001):

− Technologies need to be adapted to local environments
− Inappropriateness of technology due to climate or skill mismatch

• International trade: recognizes role of FDI and imports/exports

▶ Studies whether technical change is biased towards particular factors of
production, incorporates climate change considerations, … 72 / 74



Taking Stock
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Taking stock

▶ Solow’s model is one of the first workhorse models in the growth literature;
it helps us to understand the mechanics of growth

▶ Solow’s model key features:

• Revolves around neoclassical production function
• Blends Keynesian (behavioral rules) & neoclassical ingredients (optimizing behavior)

• Allows comparative statics and dynamics
• Can account for convergence (conditional vs. absolute) and divergence
• Has limited role for government intervention
• Can be augmented to incorporate relevant factors (eg, human capital)
• Allows to bridge theory with empirics (eg, growth accounting)
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Taking stock

▶ It sheds light on importance of saving/investment rates, population growth,
human capital, and technology differences

▶ Solow model is not entirely satisfactory:

• Most important variables are exogenous

• It emphasizes the proximate causes of growth …

• … but to say that a country is poor because it has little capital and inefficient
technology is like saying that a person is poor because it has no money!

• There are factors that make a country to have more physical- and human
capital and more efficient technologies—as there are factors that make a
person to have more money than others

▶ Next, we study fundamental causes of growth and take further look at data
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Questions?



Thank You!
(Email: luisperez@smu.edu)

(Website: https://luisperezecon.com)
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Derivation: Way 1

▶ Taking logs of k̃t = Kt/Lt:
ln k̃t = lnKt − lnLt

▶ Differentiating both sides with respect to time:
d ln k̃t
dt

=
d lnKt

dt
− d lnLt

dt

⇐⇒ d ln k̃t

dk̃t

dk̃t
dt

=
d lnKt

dKt

dKt

dt
− d lnLt

dLt

dLt

dt

⇐⇒
˙̃
kt

k̃t
=

K̇t

Kt
− L̇t

L̃t

(where ẋt = dx/dt)

▶ Discrete time approximation (ie, ẋt ≈ ∆xt) of above equation:
∆k̃t+1

k̃t
=

∆Kt+1
Kt

− ∆Lt+1
Lt



Derivation: Way 2

▶ An alternative way to reach equation
∆k̃t+1

k̃t
=

∆Kt+1
Kt

− ∆Lt+1
Lt

is to learn the “trick” we saw in class and apply it

▶ This trick is that the percentage change of a ratio is approximately the percentage
change of the numerator minus the percentage change of the denominator

▶ Applying the trick to k̃t = Kt/Lt, we get

∆k̃t+1

k̃t
=

∆Kt+1
Kt

− ∆Lt+1
Lt

Back



Derivation

▶ Way 1: Taking logs of k̂t = Kt

AtLt
, differentiating wrt to time, and approximating works

exactly as before (only that we have to take care of an extra term b/c of At)

▶ Way 2: With tech. growth also in the denominator of k̂t = Kt

AtLt
, we use two tricks:

1. The percentage change of a ratio is approx. the percentage change of the
numerator minus the percentage change of the denominator

2. The percentage change of a product is approx. the sum of percentage changes

▶ Applying these tricks to k̂t = Kt/(AtLt), we get

∆k̃t+1

k̃t
=

∆Kt+1
Kt

− ∆(At+1Lt+1)

AtLt

=
∆Kt+1
Kt

− ∆At+1
At

− ∆Lt+1
Lt
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