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Abstract

This note outlines fundamental derivative rules for both univariate and multivariate

functions. Please make sure to know these rules well—and understand how to

apply them—as they will be important for our class. You should already be familiar

with these concepts from previous coursework, including one or more of the

following prerequisite courses: ECO 1311 (Principles of Microeconomics), ECO

1312 (Inflation, Recession, and Unemployment), ECO 3301 (Price Theory), and

MATH 1309 (Introduction to Calculus for Business and Social Sciences) or MATH

1337 (Calculus I).
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1 Basic Derivative Rules for Univariate Functions

Univariate functions are functions of only one variable. For two such functions f (x)

and g(x) and any two real numbers c,n ∈R, we have the following rules:

• Constant rule:
d
dx

(c) = 0.

• Constant multiple rule:

d
dx

[
c · f (x)

]
= c ·

df (x)
dx

≡ c · f ′(x).

• Power rule:
d
dx

(xn) = n · xn−1.

• Sum rule:

d
dx

[
f (x) + g(x)

]
=
df (x)
dx

+
dg(x)
dx

≡ f ′(x) + g ′(x).

• Difference rule:

d
dx

[
f (x)− g(x)

]
=
df (x)
dx

−
dg(x)
dx

≡ f ′(x)− g ′(x).

• Product rule:

d
dx

[
f (x) · g(x)

]
=
df (x)
dx

· g(x) + f (x) ·
dg(x)
dx

≡ f ′(x) · g(x) + f (x) · g ′(x).

• Quotient rule:

d
dx

[
f (x)
g(x)

]
=

(
df (x)
dx

· g(x)− f (x) ·
dg(x)
dx

)/
g(x)2

≡
f ′(x)g(x)− f (x) · g ′(x)

g(x)2
.
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• Chain rule:

d
dx

f
(
g(x)

)
=
df

(
g(x)

)
dg(x)

·
dg(x)
dx

≡ f ′
(
g(x)

)
· g ′(x).

Some Examples

• Suppose f (x) = 3. Then, by the constant rule,

f ′(x) ≡ d
dx

(3) = 0.

• Suppose f (k) = Ak, where A > 0. Then, by the constant multiple rule,

f ′(k) ≡ d
dk

(Ak) = A.

• Suppose f (x) = x3. Then, by the power rule,

f ′(x) ≡ d
dk

(x3) = 3 · x3−1 = 3x2.

• Suppose f (x) = 2x2 and g(x) = 3x. Then, by the sum rule,

d
dx

[
f (x) + g(x)

]
= f ′(x) + g ′(x) = 4x+3.

• Suppose f (k) = Ak and g(k) = wk, where A,w > 0. Then, by the difference rule,

d
dx

[
f (x)− g(x)

]
= f ′(x)− g ′(x) = A−w.

• Suppose f (x) = 2x2 and g(x) = 3x. Then, by the product rule,

d
dx

[
f (x) · g(x)

]
= f ′(x)g(x) + f (x) · g ′(x)

= 4x · 3x+2x2 · 3 = 18x2.
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• Suppose f (x) = 2x2 and g(x) = 3x. Then, by the quotient rule,

d
dx

[
f (x) · g(x)

]
=
f ′(x)g(x)− f (x) · g ′(x)

g(x)2

=
4x · 3x − 2x2 · 3

(3x)2
=
2
3
.

• Suppose f (x) = 2x2 and g(x) = 3x. Then, f
(
g(x)

)
= f ◦ g = 2

(
3x

)2
= 2 · 9x2 = 18x2.

By the chain rule,

d
dx

f
(
g(x)

)
= f ′

(
g(x)

)
· g ′(x)

= 4g(x) · 3

= 4(3x) · 3

= 36x.
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2 Basic Derivative Rules for Multivariate Functions

Multivariate functions are functions of two or more variables. In this course, we
generally work with two-variable functions of the form z = f (x,y), where x and y are
the two variables in question. One relevant example is a production function. We
produce output Y according to some technology F that combines K and L. For example,
the Cobb-Douglas production function:

Y = F(K,L) = AKαLβ , αβ ∈ (0,1), A > 0.

2.1 Partial Derivatives

If a function is a multivariate function, we use the concept of partial differentiation to
measure the effect of a change in one independent variable on the dependent variable,
keeping the other variables constant. To apply the rules of calculus, we change only
one independent variable and keep all other independent variables constant. In this
way, we only look at the partial variation in the function instead of the total variation.

For instance, if a function is f (x,y), we use partial differentiation with respect to x to
measure the rate of change in f (x,y) when only x changes and y remains constant. The
partial derivative of f with respect to x is written as ∂f

∂x or simply as fx. Similarly, the
partial derivative of f with respect to y is written as ∂f

∂y or simply as fy . In the case of a
general production function Y = F(K,L), the partial derivatives are denoted as:

∂F(K,L)
∂K

≡ FK and
∂F(K,L)

∂L
≡ FL

We also refer to these derivatives as the marginal products of capital and labor (MPK

and MPL), respectively. The marginal product of capital tells us how much output
changes when we increase capital by one marginal unit while keeping labor constant,
and the marginal product of labor tells us how much output changes when we inrease
labor by one marginal unit while keeping capital constant.

To indicate that we are performing partial differentiations and not total differenti-
ation, we use the sign ∂f (x,y)

∂x instead of df (x)
dx . Partial differentiation with only one of

the independent variables uses the same rules as the differentiation of one variable
functions, except that while differentiation a function of several variables with respect
to one independent variable, we keep all other independent variables constant.
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Example I: Consider f (x,y) = 3x2 − 2y +4. The partial derivatives are:

∂f (x,y)
∂x

=
∂(3x2)
∂x

−
∂(2y)
∂x

+
∂(4)
∂x

= 6x − 0+0 = 6x,

∂f (x,y)
∂y

=
∂(3x2)
∂y

−
∂(2y)
∂y

+
∂(4)
∂y

= 0− 2+0 = 2.

When we compute ∂f (x,y)
∂x , we treat y as constant; and when we compute ∂f (x,y)

∂y , we
treat x as constant.

Example II: Consider the profit function Π(K,L) = P F(K,L) −WL − RK . The partial
derivatives are:

∂Π(K,L)
∂K

=
∂
(
P F(K,L)

)
∂K

− ∂(WL)
∂K

− ∂(RK)
∂K

= P
∂F(K,L)

∂K
− 0−R = P FK (K,L)−R,

∂Π(K,L)
∂L

=
∂
(
P F(K,L)

)
∂L

− ∂(WL)
∂L

− ∂(RK)
∂L

= P
∂F(K,L)

∂L
−W − 0 = P FL(K,L)−W.

When we compute ∂Π(K,L)
∂K , we treat L as constant; and when we compute ∂F(K,L)

∂L , we
treat K as constant.

Remark. As we can see in these examples, all rules of ordinary differentiation apply.
You can think of partial derivatives as three step process:

1. Use proper notation to indicate you are doing partial differentiation; that is, use
∂f (x,y)

∂x instead of df (x,y)
dx to denote the derivative of f with respect to x.

2. When taking the partial derivative of f with respect to variable x, treat any
variable that is not x as a constant.

3. Apply the rules of ordinary differentiation when calculating partial derivatives.

2.2 Second-Order Partial Derivatives

By taking the partial derivatives of the partial derivatives, we can compute higher-order
derivatives. Given that a function f (x,y) is twice-continuously differentiable, we can
derive the following sets of second-order partial derivatives. First, we can derive the
direct second-order partial derivatives:

fxx =
∂2f

∂x2
≡
∂fx
∂x

and fyy =
∂2f

∂y2
≡
∂fy
∂y

.

6



Next, we can derive the cross-partial derivatives:

fxy =
∂2f

∂x∂y
≡
∂fx
∂y

and fyx =
∂2f

∂y∂x
≡
∂fy
∂x

.

Example: Consider production function F(K,L) = AKαLβ , where α,β ∈ (0,1) and A > 0.
The second-order (direct) partial derivatives for this function are:

FKK =
∂2F(K,L)

∂K2 =
∂FK
∂K
≡ ∂(αAKα−1Lβ)

∂K
= (α − 1)αAKα−2Lβ ,

FLL =
∂2F(K,L)

∂L2
=
∂FL
∂L
≡
∂(βAKαLβ−1)

∂L
= (β − 1)βAKαLβ−2.

The cross-partial derivatives are:

FKL =
∂2F(K,L)
∂K∂L

=
∂FK
∂L
≡ ∂(αAKα−1Lβ)

∂L
= αβAKα−1Lβ−1 ≡ αβ

Y
KL

,

FLK =
∂2F(K,L)
∂L∂K

=
∂FL
∂K
≡
∂(βAKαLβ−1)

∂K
= αβAKα−1Lβ−1 ≡ αβ

Y
KL

.

As you can see, the two cross-partial derivatives of the Cobb-Douglas production are
identical. This is because function F is symmetric in K and L. You can also verify that
the second-order derivatives are negative, and that the cross partials are positive.

2.3 Using Partial Derivatives

For a twice-continuously multivariate function, the first-order partial derivatives are
the marginal functions, and the second-order direct partial derivatives measure the
slope of the corresponding marginal functions.

For example, if the function f (x,y) is twice-continuously differentiable, the marginal
functions are fx and fy , and the slopes of the marginal functions are given by fxx and
fyy , respectively.

Marginal rate of substitution (MRS). For twice-continuously differentiable functions
f (x,y), we can compute partial derivatives as shown above. We can use these partial
derivatives to measure the rate of change of the function with respect to x divided by
the rate of change of the function with respect to y, which is fx/fy . If there exists level
curves for the function f (x,y), the ratio fx/fy is called the marginal rate of substitution.
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Example: Consider production function F(K,L) = AKαLβ , where α,β ∈ (0,1) and A > 0.
In this case, the marginal rate of substitution between capital and labor is:

MRSKL :=
MPK
MPL

≡ FK (K,L)
FL(K,L)

=
α
β
L
K

We can compute the marginal rate of substitution between capital and labor at any
point (K,L). For instance, at (K,L) = (5,25) for α = β = 0.5, we have

MRSKL =
α
β
L
K

=
1/2
1/2
· 25
5

= 5

2.4 Partial Derivative and Optimization

Partial derivatives can be used to optimize an objective function of several variables
subject to a constraint or a set of constraints, given that the functions are differentiable.
Mathematically, a constrained optimization problem with an equality constraint is:

max
x,y

f (x,y)

s.t. g(x,y) = b.

Here, f (x,y) is the objective function, g(x,y) = b is the equality constraint, and x,y are
the variables we want to maximize.

We can find the optimal levels of x and y by forming the Lagrange function:

L(x,y,λ) = f (x,y) = λ
(
g(x,y)− b),

where λ is the Lagrange multiplier.1 To find the critical points we take the first-order
partial derivatives of the Lagrangian with respect to x,y and λ and set each one of them
to zero. We have,

∂L
∂x

= 0,

∂L
∂y

= 0,

∂L
∂λ

= 0

By solving this simultaneous system of equations, we find the critical value of the
function, if any exists.

1The idea of adding an artificial variable λ is to transform the constrained optimization problem into
an unconstrained one for which we can use the first-order conditions outlined above.
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Example (Profit maximization). The problem of the firm is to choose how much capital
and labor to hire given their technology to maximize its profits taking prices P ,W ,R as
given. Formally, we can write the problem of the firm as:

max
K,L≥0

Π = P Y −WL−RK

s.t. Y = F(K,L).

Here, Π denotes profits, which are given by revenues P Y net of labor costs WL and
capital costs RK , and Y = F(K,L) is a technological constraint—the firm produces
output Y according to Y = F(K,L).

In this case, we can rewrite the problem by plugging in the production function into
the profit function; that is,

max
K,L≥0

Π = P F(K,L)−WL−RK.

The first-order conditions for this problem give us a solution for the optimal levels of
capital and labor. These conditions are:

∂Π(K,L)
∂K

= P FK (K,L)−R = 0 =⇒ R = P ·FK (K,L),

∂Π(K,L)
∂L

= P FL(K,L)−W = 0 =⇒ W = P ·FL(K,L).

These conditions say that when the firm optimally chooses its levels of capital and labor,
factors of production receive their marginal products. For Y = AKαLβ , we have:

R = P ·αY
K
,

W = P · (1−α)Y
L
.

The rental rates of factors are inversely related to their quantities (i.e., the larger the
number of workers L, the lower the wage W these workers receive; and the larger the
number of machines K , the cheaper it is to rent these machines.)
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