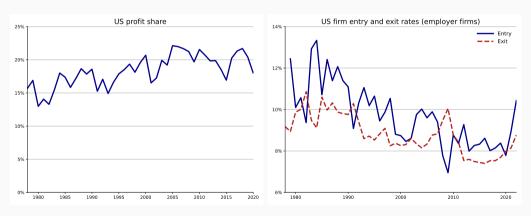


### Discussion of "The Rise in Profits and Fall in Firm Entry"

Van Vlokhoven (2024)

### Luis Pérez


(luisperez@smu.edu)

December 19, 2024

3rd XAmsterdam Macroeconomic Workshop

### Main idea

▶ Puzzling to observe rise in profits alongside a decline in firm entry



Sources. Hasenzagl and Perez 2023 based on US Compustat (left) and Business Dynamics Statistics (right)

### Main idea

Puzzling to observe rise in profits alongside a decline in firm entry

$$\underbrace{c_e}_{\text{entry cost}} = \underbrace{\mathbb{E} \sum_a \beta^a \Pi_a}_{\text{present DV of firm}} \tag{Free entry)}$$

- ↑ profits, ↑ value of having a firm
- ↓ value of having a firm, ↓ entry
- ▶ Two possibilities: 1) rising entry costs; 2) changes in the firm's life cycle
- ▶ **VV's idea**: Rise in back-loadness of profits could explain these two trends
  - Back-loadness in profits: profit-age gradient has become steeper over time
    (ie, old firms make relatively more profits now and young firms less than in the past)
  - Because of discounting, value of firm is lower yet profit share rises over time

### What this paper does

- ▶ Build model of entrepreneurial dynamics in the tradition of Hopenhayn 1992
  - With time-varying markups + special form of intangible capital (ie, brand value)
  - Formalize idea of increase in back-loadness of profits through brand value
    - Consumers prefer goods with higher brand value
    - Firms invest in brand value, which is accumulated similar to physical capital
    - Because building brand value takes time, older firms earn more profits
- Calibrate model to match empirical moments in US data
- ▶ Use model to understand dynamics in firm entry and aggregate profits
  - Move parameters (sensitivity, depreciation rate & productivity of brand value)
     to see if these can explain trends of interest

### **Findings**

- ► Main finding: model rationalizes rise in profits and fall in entry with lower depreciation rate of intangibles
  - Lower depreciation rate leads to more back-loaded profits
  - Older firms accumulate more intangibles and thus face higher demand
- Why are these findings interesting?
  - · Literature emphasizes technology story, one in which fixed costs rise over time
  - Van Vlokhoven highlights demand story, one in which firms influence demand via intangible investments
  - Demand story could have different policy implications than technology story

### My discussion

- Explain key mechanism
- ► Two points:
  - 1. Hard to argue in favor of proposed mechanism
  - 2. No possibility for changes in technology over life cycle may lead to overstate importance of proposed mechanism

And offer some suggestions to (partially) address these concerns

My take

### Model and Mechanism

### Model and key mechanism

- ► Representative household:
  - Supplies labor inelastically in competitive market
  - Gets profit income from ownership of firms
  - Spends all income in final good each period
- ▶ Final good aggregates N varieties  $\omega$  with brand value  $\chi$ :

$$\int_0^N \chi(\omega)^{\psi} \Upsilon\left(\frac{y(\omega)}{Y}\right) \mathrm{d}\omega = 1 \qquad \text{where} \qquad y(\omega) = z l_p^{\eta}$$

- +  $\psi$  governs sensitivity of demand to brand value  $\chi(\omega)$
- Υ: Kimball aggregator

Brand value shifts out the demand curve

### Model and key mechanism

The problem of a firm with productivity z, brand value  $\chi$  and age a:

$$V(z,\chi,a) = \max \underbrace{p(z,\chi)y(z,\chi) - wl_p(z,\chi)}_{\text{gross profits}} - \underbrace{wl_\chi + wl_o}_{\text{Intangibles and overhead}} + \beta(1-\delta_a)\mathbb{E}_zV(z',\chi',a')$$
 s.t. 
$$\log(z_{a'}) = \rho_a + \rho_z \log z_a + \xi_a$$
 
$$\chi_{a'} = (1-\delta)\chi_a + \nu l_{\chi_a}^{\phi}$$
 
$$p(z,\chi), y(z,\chi) \text{ set optimally given demand, a function of } \chi$$

**Key mechanism**: With lower  $\delta$ , firms accumulate more intangibles over time. This favors older firms and leads to more back-loaded profits.

► Point 1: Hard to argue in favor of proposed mechanism

- 1. Nobody knows what the depr. rate of brand value is; much less how it evolved
- 2. Much empirical evidence for competing explanation: rising fixed/entry costs (De Loecker et al 2020, Gutierrez et al 2021, Hasenzagl and Perez 2023, De Ridder 2024, ...)
  - More back-loaded profits also consistent with more front-loaded costs
  - Firms may incur higher costs early on and make profits later in life
- → New mechanism bears burden of proof: need supporting empirical evidence
  - Suggestion 1: Model implies monotonic relationship between brand value and firm age. Show this is indeed the case.
    - Eg, look at ratio of stock market cap. to value of physical assets over life cycle.
       Older firms should have higher ratios

Point 1: Hard to argue in favor of proposed mechanism

- 1. Nobody knows what the depr. rate of intangibles is; much less how it evolved
- 2. Much empirical evidence for competing explanation: rising fixed/entry costs (De Loecker et al 2020, Gutierrez et al 2021, Hasenzagl and Perez 2023, De Ridder 2024, ...)
  - More back-loaded profits also consistent with more front-loaded costs
  - Firms may incur higher costs early on and make profits later in life
- → **New mechanism bears burden of proof**: need supporting empirical evidence
  - Suggestion 2: Show growth rate in ratio of stock market cap. to value of physical assets has accelerated over time, consistently with fall in depreciation rate
    - Ie, firms accumulate brand value faster when depreciation rate of intangibles falls

Point 1: Hard to argue in favor of proposed mechanism

- 1. Nobody knows what the depr. rate of intangibles is; much less how it evolved
- 2. Much empirical evidence for competing explanation: rising fixed/entry costs (De Loecker et al 2020, Gutierrez et al 2021, Hasenzagl and Perez 2023, De Ridder 2024, ...)
  - More back-loaded profits also consistent with more front-loaded costs
  - Firms may incur higher costs early on and make profits later in life
- → **New mechanism bears burden of proof**: need supporting empirical evidence
  - Suggestion 3: Show growth rate in ratio of stock market cap. to value of physical assets has accelerated more in sectors with larger marketing investments
    - Do the same for firms within given sectors

Point 1: Hard to argue in favor of proposed mechanism

- 1. Nobody knows what the depr. rate of intangibles is; much less how it evolved
- 2. Much empirical evidence for competing explanation: rising fixed/entry costs (De Loecker et al 2020, Gutierrez et al 2021, Hasenzagl and Perez 2023, De Ridder 2024, ...)
  - More back-loaded profits also consistent with more front-loaded costs
  - Firms may incur higher costs early on and make profits later in life
- → New mechanism bears burden of proof: need supporting empirical evidence
  - Suggestion 4: Show sectors with larger marketing investments experience higher rises in profit shares
    - Same should be true for firms within sectors

► Point 1: Hard to argue in favor of proposed mechanism

- 1. Nobody knows what the depr. rate of intangibles is; much less how it evolved
- 2. Much empirical evidence for competing explanation: rising fixed/entry costs (De Loecker et al 2020, Gutierrez et al 2021, Hasenzagl and Perez 2023, De Ridder 2024, ...)
  - More back-loaded profits also consistent with more front-loaded costs
  - Firms may incur higher costs early on and make profits later in life
- → New mechanism bears burden of proof: need supporting empirical evidence
  - Suggestion 5: Calibrate model for sectors w/ rising profit shares, declining entry rates, and different marketing intensities
    - Look at required fall in depr. rate of intangibles in different sectors; hard to argue for wide differences in this depreciation rate

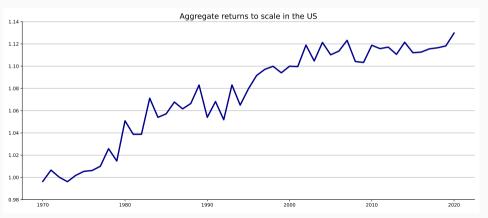
- ► Point 2: No possibility for changes in technology over firm's life cycle lead to overstate importance of proposed mechanism (Eg, changes in returns to scale)
  - Hasenzagl and Perez 2023 show rising returns to scale in the US over time
  - Such a rise partly reflects technological change
  - IO literature provides clear evidence of this at the industry level (Miller et al 2022, Ganapati 2021, ...)
  - → How much of the fall in entry and rise in profits explained by returns to scale changing over life cycle?
    - Model doesn't capture any of this given current calibration
    - Suggestion: Calibrate model with empirical values of returns to scale/overhead costs in two periods, see how much left to explain by falling depr. rate of intan.

## My Take

### My take

- ▶ Very interesting paper studying macro trends at forefront of policy debates
- ▶ Van Vlokhoven emphasizes demand story for rise in profits and fall in entry
  - He argues that fall in depreciation rate of intangibles can explain joint trends
  - Literature so far mostly focused on technology story, one where fixed costs rise (De Loecker et al 2020, Gutierrez et al 2021, Hasenzagl and Perez 2023, De Ridder 2024, ...)
- ▶ Neat point + empirical evidence pointing to rise in profit back-loadness
  - But more back-loaded profits could be explained by competing explanation
- ▶ More work needed:
  - + Empirical evidence in favor of proposed mechanism
  - + Extend/re-calibrate model to accommodate competing explanations
  - + Think about policy implications of two stories

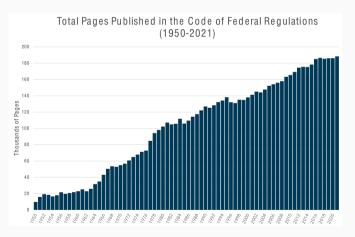
### Questions?


### Thank You!

(Email: luisperez@smu.edu)

(Website: https://luisperezecon.com)

### Empirical evidence in favor of rising fixed/entry costs


Hasenzalg and Perez 2023 (and De Loecker et al 2020, De Ridder 2024 and others) provide empirical evidence of rising fixed/entry costs



Source. Hasenzagl and Perez 2023

### Empirical evidence in favor of rising fixed/entry costs

Increase in volume of regulatory text points to rising fixed/entry costs Pack



Source. Regulatory Studies Center, The George Washington University